

P.O. Box 200901 Helena, MT 59620-0901

# **PERMIT FACT SHEET**

# MONTANA GROUND WATER POLLUTION CONTROL SYSTEM (MGWPCS)

| Permittee:             | Four Corners Water & Sewer District (FCWSD)                            |
|------------------------|------------------------------------------------------------------------|
| Permit Number:         | MTX000110                                                              |
| Permit Type:           | Domestic wastewater                                                    |
| Application Type:      | Modification                                                           |
| Facility Name:         | Four Corners Water & Sewer District Wastewater System                  |
| Facility Location:     | SE ¼ Section 23, Township 02S, Range 04E,                              |
|                        | Lot 4UL-3, Plat J-316, Elk Grove Subdivision Phase 1.                  |
|                        | Latitude: 45.644430°, Longitude: -111.19035°; Gallatin County, Montana |
| Facility Address:      | 495 Quail Run Road, Bozeman, MT 59718                                  |
| Facility Contact:      | Phil George, General Manager                                           |
|                        | Larry Powers, Chief Operator                                           |
|                        | Brad Hammerquist – Engineer – Morrison Maierle                         |
| Treatment Type:        | Level 2                                                                |
| Receiving Water:       | Class I Ground Water                                                   |
| Number of Outfalls:    | 3 Discharge structures                                                 |
| Outfall / Type:        | Subsurface drainfields, infiltration ponds and spray irrigation        |
| Effluent Type:         | Domestic and commercial wastewater                                     |
| Mixing Zone:           | Standard                                                               |
| Effluent Limit Type:   | WQBEL                                                                  |
| Effluent Limits:       | Total nitrogen: 31 lbs/day (Outfall 001)                               |
|                        | 128 lbs/day (Outfall 003)                                              |
| Flow Rate:             | Design maximum Outfall 001: 100,000 gallons per day (gpd)              |
|                        | Design maximum Outfall 003: 1.4 million gallons per day (MGD)          |
| Effluent sampling:     | Quarterly: EFF-001, EFF-003                                            |
| Ground water sampling: | Quarterly: MW-4, MW-4A, MW-4C, MW-2, MW-2A, MW-2B, MW-3B               |
| Fact Sheet Date:       | November - December 2020                                               |
| Prepared By:           | Darryl Barton                                                          |
|                        |                                                                        |

## **1.0 PERMIT INFORMATION**

DEQ issues MGWPCS permits for a period of five years. The permit may be reissued at the end of the period, subject to reevaluation of the receiving water quality and permit limitations. This fact sheet provides the basis for DEQ's decision to modify a MGWPCS wastewater discharge permit Four Corners Water & Sewer District for the Four Corners Water & Sewer District wastewater treatment system.

FACT SHEET: MGWPCS Permit

### 1.1 APPLICATION

DEQ received an application and verification of fees submitted for modification of the permit on August 26, 2020. DEQ reviewed the submittal and issued a completeness letter on September 24, 2020.

### 1.2 PERMIT HISTORY

Modifications to the system have routinely preceded the expiration date of the permit. This is the case for the current permit that is set to expire in 2023.

The current permit became effective March 1, 2018. Its expiration is February 28, 2023. This Fact Sheet and Permit is in response to a modification of the current permit.

This permit modification addresses:

- Increased discharge capacity of Outfall 003 to 1.4 MGD and replacement of subsurface RI with open I/P basins.
- Sequencing Batch Reactor construction with discharge capacity of 1.2 MGD.
- Outfall 002 will be eliminated.

Permit history details for Four Corners Water and Sewer District:

| Date        | Effluent Limits                               | Groundwater Limits      |
|-------------|-----------------------------------------------|-------------------------|
| 2001 – 2005 | Nitrogen                                      | None                    |
| 2005 – 2006 | Nitrogen, Phosphorus, Fecal Coliform Bacteria | Nitrate, Fecal Bacteria |
| 2006 – 2010 | Nitrogen, Phosphorus, Fecal Coliform Bacteria | Nitrate, Fecal Bacteria |
| 2010 – 2015 | Nitrogen, Phosphorus, Fecal Coliform Bacteria | Nitrate, Fecal Bacteria |
| 2015 – 2018 | Total Nitrogen, Total Phosphorus              | TN, E. coli             |
| 2018 – 2023 | Total Nitrogen, Total Phosphorus              | TN, E. coli             |

### 1.3 CHANGES TO THIS PERMIT

FCWSD is in the process of constructing the first two phases of the new Four Corners Water Reclamation Facility (WRF) which consists of a sequencing batch reactor with a design capacity of 0.4 MGD. The WRF is designed to be capable of expanding incrementally to an ultimate capacity of 1.2 MGD. The new WRF will operate concurrently with the existing 0.3 MGD Elk Grove Wastewater Treatment Plant. The District currently has four permitted discharges as summarized in **Table 1**. However, Outfall 002 has not been constructed and is no longer a planned point of discharge.

| Table 1             | . Outfall Summary                                                 |                                                        |             |                 |
|---------------------|-------------------------------------------------------------------|--------------------------------------------------------|-------------|-----------------|
| Effluent<br>Outfall | Location                                                          | Туре                                                   | Capacity    | Status          |
| 001                 | Elk Grove Subdivision UL-2                                        | Subsurface<br>Infiltration/Percolation                 | 100,000 gpd | Constructed     |
| 002                 | Rainbow Subdivision Lot C1-<br>A, 195, 196, 199, and 200          | Subsurface Pressure<br>Dosed                           | 35,537 gpd  | Not Constructed |
| 003                 | Rainbow Subdivision Lots<br>190-195, 199-203, 208-212,<br>214-215 | Subsurface Rapid<br>Infiltration and open<br>IP Basins | 540,000 gpd | Constructed     |
| 004                 | Elk Grove Subdivision RT-1                                        | Spray Irrigation                                       | 25,000 gpd  | Not Constructed |

It is proposed to increase the permitted discharge quantity at Outfall 003 to 1.4 MGD and replace the existing subsurface rapid infiltration system with open infiltration percolation basins. There are no proposed changes to permitted Outfalls 001 and 004. Outfall 002 will be eliminated as it has never been constructed and a portion of the Outfall 002 area will be occupied by the new Four Corners WRF. Engineering plans and specifications are being submitted to DEQ separately for the Outfall 003 Improvements to replace the existing RI system with IP basins. These improvements will provide additional future capacity and provide the operators with access for cleaning and scarifying the basins.

Outfall 003 currently consists of subsurface Rapid Infiltration (RI) basins and open Infiltration Percolation (IP) basins with a permitted capacity of 200,000 gpd and 340,000 gpd, respectively. The existing subsurface RI basins are composed of 12 zones with manufactured infiltrator chambers, discharge piping in the chambers with orifices, actuated butterfly valves at each zone, transport piping, a submersible dose pump station, and buried fiberglass storage tanks with 22,000 gallons of volume. A controls system monitors the storage tank water levels, runs the dose pumps, monitors and records pumped flow, and controls zone valves. A rotation through the 12 zones is automated by the valves and programmable at the control panel to produce wetting and drying schedules. Existing disposal infrastructure at Outfall 003 was constructed in 2006 and began receiving effluent in 2011 when UV improvements were completed at the treatment plant. The existing RI basin infrastructure was designed and permitted in 2004 under previous rules that did not include the current Section 122.22 requirements for subsurface absorption cells. The existing open IP basins are composed of three basins which were constructed in 2015 in accordance with Section 122.1. The IP basins utilize the same treated effluent storage tanks and submersible dose pump station described above. A separate building houses the valves that control dosing to each of the basins.

In summary the permit modification addresses:

- Increase discharge capacity of Outfall 003 to 1.4 MGD and replace subsurface rapid infiltration galleries (RI) with open infiltration/percolation basins (I/P).
- Use of a Sequencing Batch Reactor to treat wastewater.
- Outfall 002 will be eliminated

As the modifications to the system constitute an increased discharge, DEQ performed new nonsignificance determinations to meet nondegradation requirements.

Effluent limitations have been updated using current water quality data.

Page 4 of 47 FACT SHEET: MGWPCS Permit

No. MTX000110 – Four Corners Water & Sewer District

# 2.0 FACILITY INFORMATION

## 2.1 LOCATION

The Four Corners Water and Sewer District (FCWSD) wastewater treatment system is located in the Four Corners area of the Gallatin Valley, which is about 5 miles west of Bozeman and about 6.5 miles south of Belgrade (**Figure 1**). The system serves a population of about 22,000 people, and 168 commercial / industrial connections. The area has seen extensive growth and development over the past two decades and looks to see more in the future. **Figure 2** depicts the FCWSD service area and **Figure 3** shows the components of the wastewater system.

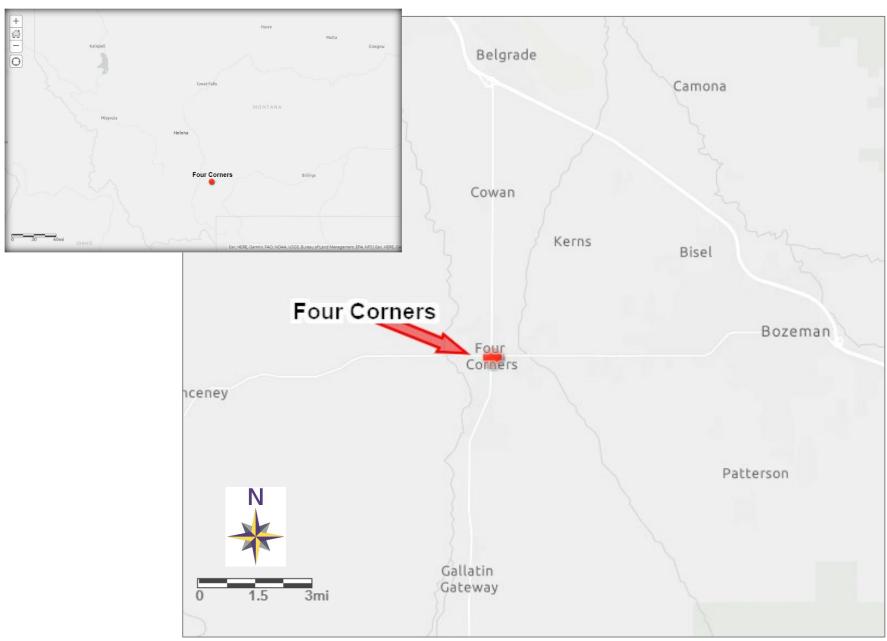
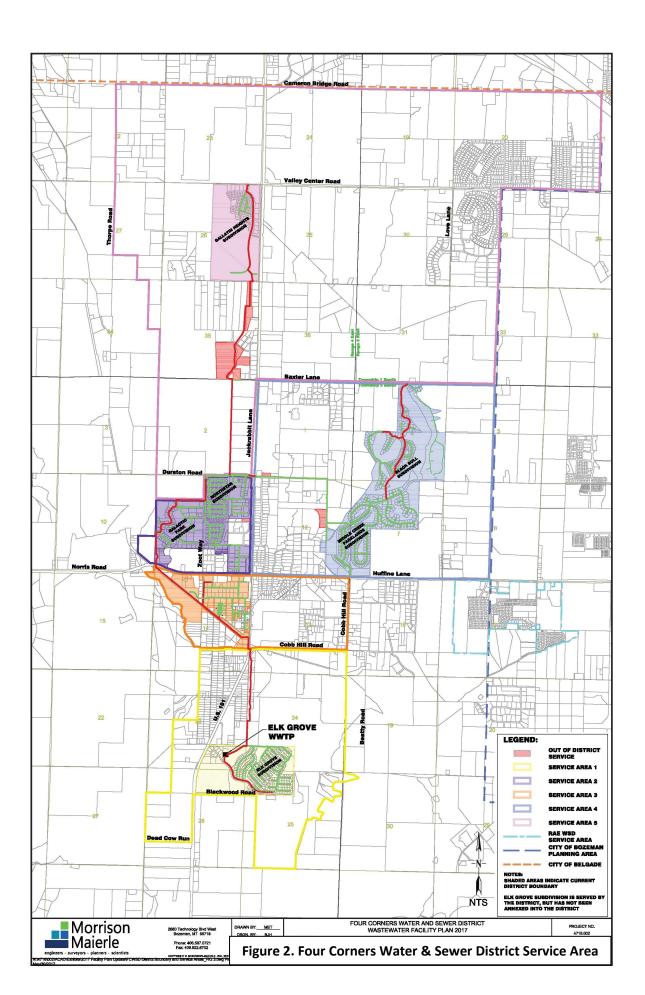
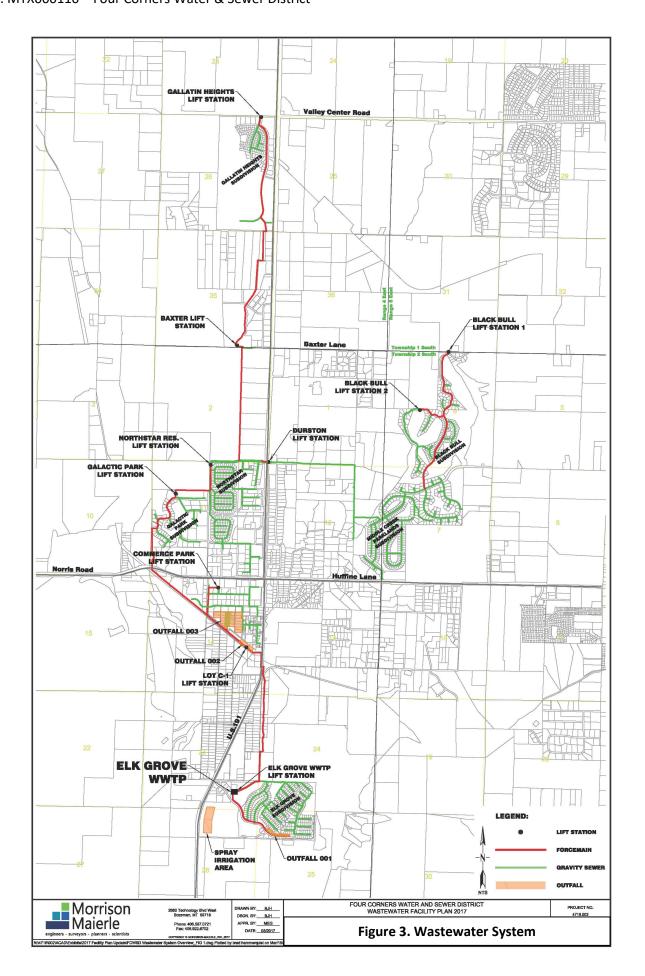





Figure 1. Location of Four Corners Water & Sewer District





### 2.2 OPERATIONS

System operations are summarized in Table 2.

### Table 2. Collection, Treatment, and Disposal System Summary

### Elk Grove Wastewater Treatment Plant - Domestic Wastewater/Sewerage

<u>Sewage is collected from</u> Elk Grove Subdivision, Northstar Subdivision, Galactic Park Subdivision, Four Corners Minor Subdivision, Rainbow Subdivision, Black Bull Subdivision, Middle Creek Parklands Subdivision, Gallatin Heights Subdivision, and many small commercial/business parks.

Four Corners W&S Distr. WWTP Location. Address: 195 Elk Grove Lane, Bozeman, MT 59718.

Latitude: 45.64443° Longitude: -111.19035°

NW 1/4 SE 1/4 Section 23, Township 02S, Range 04E, Lot 4, Platt J-316, Elk Grove Subdivision Phase 1

Contributing Sources of Wastewater: Residential and limited commercial / industrial (domestic strength wastes).

### Daily Maximum Design Flow (gallons/day): 700,000 (ft<sup>3</sup>/day): 116,970

Treatment: Level 2 via a closed loop reactor with extended aeration, secondary clarification, and aerobic sludge digestion. Refer to **Figure 4** for the WWTP processes.

### Outfall 001 - Domestic Wastewater/Sewerage

Method of Disposal: Infiltration/percolation to ground water.

## Disposal Structure: Subsurface dosed infiltration/percolation cells (Outfall 001).

673 Elk Grove Lane, Bozeman, MT 59718 Latitude: 45.63933° Longitude: -111.18276°,

SW 1/4 NW 1/4 of Section 25, Township 02 South, Range 04 West, Elk Grove Subdivision Ph. 1, Lot 02.

Contributing Sources of Wastewater: Residential and limited commercial / industrial (domestic strength wastes).

### Daily Maximum Design Flow (gallons/day): 100,000 (ft³/day): 13,368

Treatment: Level 2 via a closed loop reactor with extended aeration, secondary clarification, and aerobic sludge digestion.

Refer to **Figure 4** for the WWTP processes.

### Outfall 002 - Domestic Wastewater/Sewerage

Outfall 002 discharge has not been installed. Outfall 002 is no longer intended to be a point of wastewater discharge.

### Outfall 003 - Domestic Wastewater/Sewerage

Method of Disposal: Infiltration to ground water

### Disposal Structure: Subsurface Rapid Infiltration and Infiltration Percolation Basins (Outfall 003).

Latitude: 45.66597° Longitude: -111.19117°

NE 1/4 of Section 14, Township 02 South, Range 04 East, Rainbow Subdivision Lots 190-196, 199-203, & 208-212, Plat D-42.

Contributing Sources of Wastewater: Residential and limited commercial / industrial (domestic strength wastes).

### Daily Maximum Design Flow (gallons/day): 540,000 current, (ft<sup>3</sup>/day): 90,241 current; 1.4 MGD new

Treatment: Level 2 via a Sequencing Batch Reactor.

Refer to **Figure 4** for the WWTP processes

### Outfall 004 - Domestic Wastewater/Sewerage

Method of Disposal: Spray Irrigation to the ground surface; applied at agronomic rates.

This Outfall is not regulated by this 2020 DEQ MGWPCS Permit.

## Disposal Structure: Surface application of effluent at agronomic rates (Outfall 004).

These structures have not been installed and are not currently discharging effluent to the ground surface.

Latitude: 45.64076° Longitude: -111.19485°

W 1/2 NW 1/4 NE 1/4 of Section 26, Township 02 South, Range 04 East, Elk Grove Subdivision Ph. 4, Tract 1, Plat J-394.

Contributing Sources of Wastewater: Residential and limited commercial / industrial (domestic strength wastes).

### Daily Maximum Design Flow (gallons/day): 25,000 (ft<sup>3</sup>/day): 3,342

Treatment: Level 2 via a closed loop reactor with extended aeration, secondary clarification, and aerobic sludge digestion. The effluent that is sent to Outfalls 003 and 004 is disinfected with UV Radiation. Phosphorous removal is achieved by chemical precipitation. Refer to **Figure 4** for the WWTP processes.

Page **9** of **47** FACT SHEET: MGWPCS Permit

No. MTX000110 - Four Corners Water & Sewer District

### Table 2. Collection, Treatment, and Disposal System Summary

Status: Not currently being used for wastewater disposal.

Four Corners has been a growing area over the past few decades. The system is designed to be able to accommodate an increase in service area and connections. The existing Elk Grove Wastewater Treatment Plant (WWTP) is a closed loop reactor with extended aeration, secondary clarification, aerobic sludge digestion, and ultraviolet (UV) disinfection. Biosolids are land applied. A dewatering facility (screw press) reduces biosolids hauling costs. The Four Corners Water Reuse Facility (WRF) is under the first phase of construction (0.4 MGD capacity). It is a Sequencing Batch Reactor (SBR) with ultraviolet (UV) disinfection. Biosolids will be dewatered (screw press) and taken to the Logan Landfill for use in their compost program. The Four Corners WRF is designed to be capable of incremental expansion up to an ultimate capacity of 1.4 MGD. Overall, Level 2 treatment is achieved.

Monitoring and sampling requirements are discussed in Section 6.

Figure 4 is a line drawing of the collection, treatment, and disposal process.

### 2.2.1 EFFLUENT DISCHARGE STRUCTURES

**Table 1** describes discharge structures. **Figures 2 and 3** show each on a map.

- Outfall 001 is the historic outfall for the Elk Grove WWTP and is located south of the Elk Grove Subdivision. It consists of subsurface discharge by infiltration/percolation cells.
- Outfall 002 was planned and not built. It will not be an outfall.
- Outfall 003 consists of rapid infiltration galleries (RI) and infiltration/percolation basins. These are installed and currently being used for subsurface effluent disposal. This permit modification increases discharge capacity of Outfall 003 to 1.4 MGD and replaces subsurface RI with open I/P basins.
- Outfall 004 will be an area where effluent is discharged to the ground surface through sprinklers. The
  permittee is required to land apply treated wastewater at agronomic rates in accordance with Department
  review and any subsequent updates issued by the Department. In general, the permittee is prohibited from:
  - 1. Applying above agronomic rates that may lead to an unauthorized infiltration of pollutants to state ground water; and,
  - 2. Operating in a manner that results in standing wastewater or overland flow.

Although the effluent flow and quality will be monitored, this discharge is not regulated through a MGWPCS permit. This irrigation system has not been installed.

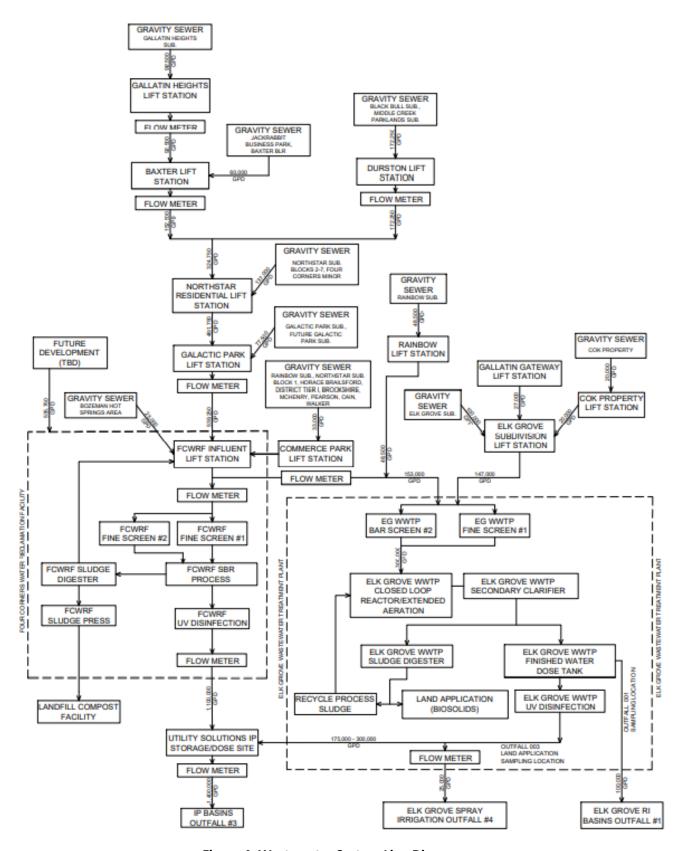



Figure 4. Wastewater System Line Diagram.

## 2.3 EFFLUENT CHARACTERISTICS

DEQ requires a permit applicant to disclose the quality of the effluent so that DEQ may evaluate the potential for pollution of state water. During the previous permit cycle, the facility sampled and reported effluent quality criteria to DEQ in the form of discharge monitoring reports (DMRs). These data are summarized below in **Table 3**. The majority of the concentrations are reported in units of milligrams per liter (mg/L), which is equivalent to one part per million.

| Table 3: Effluent Quality – Outfall 003. DMR Results |          |           |                              |                              |                                             |                 |
|------------------------------------------------------|----------|-----------|------------------------------|------------------------------|---------------------------------------------|-----------------|
| Parameter <sup>(1)</sup>                             | Location | Units     | Reported<br>Minimum<br>Value | Reported<br>Average<br>Value | Reported<br>Maximum <sup>(2)</sup><br>Value | # of<br>Samples |
| BOD, 5-day                                           | EFF-003  | mg/L      | 1.50                         | 7.07                         | 23.0                                        | 31              |
| Chloride                                             | EFF-003  | mg/L      | 117                          | 182                          | 216                                         | 31              |
| E. coli                                              | EFF-003  | cfu/100mL | 1                            | 32                           | 318                                         | 31              |
| Flow rate, Discharge                                 | FM-003   | gpd       | 251,613                      | 283,116                      | 355,000                                     | 31              |
| Nitrogen, Nitrate + Nitrite (as N)                   | EFF-003  | mg/L      | 2.87                         | 6.83                         | 10.7                                        | 31              |
| Nitrogen, Ammonia                                    | EFF-003  | mg/L      | 0.06                         | 0.17                         | 0.50                                        | 31              |
| Nitrogen, Total Kjeldahl (as N )                     | EFF-003  | mg/L      | 1.00                         | 2.43                         | 5.50                                        | 31              |
| Nitrogen, Total (as N) <sup>(3)</sup>                | EFF-003  | mg/L      | 3.05                         | 8.65                         | 13.2                                        | 31              |
| Nillogen, Total (as N)                               | EFF-003  | lbs/day   | 6.99                         | 20.9                         | 32.3                                        | 31              |
| Phosphorus Total (oc D) (4)                          | EEE 002  | mg/L      | 0.12                         | 0.70                         | 1.89                                        | 31              |
| Phosphorus, Total (as P) <sup>(4)</sup>              | EFF-003  | lbs/day   | 0.25                         | 1.69                         | 4.79                                        | 31              |
| Total Suspended Solids (TSS)                         | EFF-003  | mg/L      | 5.0                          | 11.4                         | 55.0                                        | 31              |

### Footnotes:

DMR = Self-Reported Discharge Monitoring Reports

EFF-003: Effluent sample site located after UV disinfection prior to discharge.

FM-003: Effluent flow meter located after UV disinfection prior to discharge.

Period of Record: 03/01/2018 through 09/30/2020.

- (1) Conventional and nonconventional pollutants only, table does not include all possible toxics.
- (2) Maximum value recorded of all quarterly reported Daily Maximum Values.
- (3) Effluent limit for Total Nitrogen is 44.4 lbs/day
- 4) Effluent limit for Total Phosphorus is 18.2 lbs/day

### 2.4 GEOLOGY

The Gallatin Valley is a topographic and structural intermontane basin bounded by folded and faulted sedimentary, metamorphic, and igneous rocks ranging from Precambrian to Cretaceous age. The Gallatin valley is in the Three Forks structural basin which includes the Gallatin Valley, the Madison Valley, and the lower Jefferson River Valley. The Gallatin valley today is a remnant of a combination of early Tertiary Laramide compressional uplift and mid to late Tertiary Basin and Range extensional movement. The Laramide uplift folded and faulted the crust forming the ancestral Rocky Mountains. Subsequent extensional movement reactivated Laramide faults and pulled the ancestral Rockies apart, leaving a series of basins separated by north to south trending mountain ranges. The Gallatin Valley, along with the Madison and lower Jefferson Valleys of today are each a portion of one of these large basins; the Three Forks structural basin. The Three Forks Basin continued to gradually subside throughout mid to late Tertiary times and includes a large volume of erosional debris from the bounding

No. MTX000110 - Four Corners Water & Sewer District

highlands and a considerable amount of volcanically derived sediments as well. Sediments within the basin vary compositionally from Archean gneisses and schists to Paleozoic carbonates and sandstones to reworked early to mid-Tertiary mudstones, sandstones, and conglomerates.

The discharge structures and irrigation area are all located in the alluvial deposits of the nearby West Gallatin River. Based on the Natural Resource Conservation Service mapping, the soils in this area consist primarily of sandy, gravelly, and cobbly loams. The local soils have developed on the valley fill stream and alluvial fan deposits of the Gallatin River. These deposits are approximately 200 feet thick and are composed of silt, sand, and gravel that were derived from the Gallatin Range to the south. This area is located directly east of the Gallatin River and its current floodplain.

## 2.5 HYDROGEOLOGY

An alluvial aquifer begins at the mouth of the Gallatin Canyon about 4 miles southwest of Gallatin Gateway. The aquifer extends north through the Four Corners area beyond Belgrade along the Gallatin River. It exits the valley northwest of Manhattan where the Gallatin River concludes forming the Missouri River. Ground water in this area has been monitored to better understand the water quality characterization and meet permit requirements. Ground water is present in the shallow unconfined alluvial aquifer beneath this area. Ground water flow direction is generally between North 3° West and North 16° West. Ground water gradients are reported to be between 0.0066 and 0.0068 feet/feet. The hydraulic conductivity beneath Outfall 001 has been characterized as 877 feet/day and beneath Outfall 003 as 567 feet/day. The depth to the water table averages 19 feet bgs (below ground surface) in the Outfall 001 area, 11 feet bgs at Outfall 003, and 6 feet bgs in the land application site (Outfall 004). Important hydrogeologic characteristics are summarized below in **Table 4**.

**Table 4. Hydrogeologic Summary** 

| Average depth to ground water       | 19 feet (Outfall 001), 11 feet (Outfall 003), 6 feet (Outfall 004)         |
|-------------------------------------|----------------------------------------------------------------------------|
| General ground water flow direction | N3°W to N16°W                                                              |
| Hydraulic conductivity              | 877 feet per day (Outfall 001), 567 feet per day (Outfall 003)             |
| Hydraulic gradient                  | 0.0066 feet/feet (Outfall 001) and 0.0068 feet/feet (Outfall 003)          |
| Nearest downgradient surface water  | Gallatin River (2,300 feet from Outfall 001) (3,100 feet from Outfall 003) |

### 2.6 GROUND WATER MONITORING WELLS

There are 7 monitoring wells actively being used in relation to this permit (10 wells on the site). MW-4 and MW-4A are downgradient of Outfall 001; MW-4C is upgradient of Outfall 001. MW-2 and MW-2A are downgradient of Outfall 003; MW-2B is upgradient of Outfall 003. MW-3B is upgradient of Outfall 004. Monitoring well construction details are provided below in **Table 5**. Monitoring well maps and driller's logs are attached as **Appendix A**.

### **Table 5. Monitoring Well Summary**

Monitoring Well: MW-2 MBMG GWIC ID: 224342

Constructed on 03/16/2006

Location: 100 Shepherd Trail, midway between Graves Trail and Shepherd Trail.

This well is collocated with MW-2a.

Latitude: 45.66832° Longitude: -111.191021°

Representation: Used as a downgradient water table monitoring point from Outfall 003. This is the shallow

well of the well pair at this site.

Monitoring Well: MW-2A

MBMG GWIC ID: 224341 Constructed on 03/14/2006.

Location: 100 Shepherd Trail, midway between Graves Trail and Shepherd Trail.

This well is collocated with MW-2.

Latitude: 45.66832° Longitude: -111.191021°

Representation: Used as a downgradient water table monitoring point from Outfall 003. This is the deeper

well of the well pair at this site.

Monitoring Well: MW-2B

MBMG GWIC ID: 224343

Constructed on 03/17/2006.

Location: Just north of 1981 Milwaukee Road, and just east of the Effluent Force Main and Dose Tanks for

Outfall 003.

Latitude: 45.66832° Longitude: -111.191021°

Representation: Used as an up-gradient shallow water table monitoring point from Outfall 003.

Monitoring Well: MW-2C

MBMG GWIC ID: 224344

Constructed on 03/17/2006. Not currently used.

Location: In the north central portion of 213 Milwaukee Road and northwest of the Effluent Force Main and

Dose Tanks for Outfall 003.

Latitude: 45.66832° Longitude: -111.191021°

Representation: Used as a side-gradient monitoring point from Outfall 003 and possible side or upgradient

shallow water table monitoring point from Outfall 002A (when it is brought on-line).

**Monitoring Well: MW-3** 

MBMG GWIC ID: 240500

Constructed on 12/12/2007. Not currently used.

Location: downgradient end of Outfall 004 (the land application site).

Representation: Downgradient from Outfall 004.

Monitoring Well: MW-3B

MBMG GWIC ID: 240498 Constructed on 12/11/2007.

Location: Situated southwest of the Elk Grove Subdivision 14 Blackwood Road. It is northeast of the

intersection between Gallatin Road (Highway 191) and Blackwood Road.

Latitude: 45.45.63908° Longitude: -111.19462°

Representation: Up-gradient monitoring well end of the land application site.

Page **14** of **47** FACT SHEET: MGWPCS Permit

No. MTX000110 - Four Corners Water & Sewer District

**Monitoring Well: MW-4** 

MBMG GWIC ID: 240503 Constructed on 12/18/2007.

Location: In the southwest portion Elk Grove Subdivision near 16 East Clara Court and north of Outfall 001.

Well is collocated with MW-4A.

Latitude: 45.64022° Longitude: -111.18369°

Representation: Used as a downgradient water table monitoring point from Outfall 001. It is likely that this is the shallower of the well pair at this site.

Monitoring Well: MW-4A

MBMG GWIC ID: 240505 Constructed on 12/18/2007.

Location: In the southwest portion Elk Grove Subdivision near 16 East Clara Court and north of Outfall 001.

Well is collocated with MW-4.

Latitude: 45.64022° Longitude: -111.18369°

Representation: Used as a downgradient water table monitoring point from Outfall 001. It is likely that this is

the deeper of the well pair at this site.

Monitoring Well: MW-4B

MBMG GWIC ID: 240502

Constructed on 12/14/2007. Not currently used.

Location: In the southwest portion Elk Grove Subdivision near 388 Pavilion Lane and west of Outfall 001.

Latitude: 45.63906° Longitude: -111.18454°

Representation: Used as a side-gradient water table monitoring point from Outfall 001.

**Monitoring Well: MW-4C** 

MBMG GWIC ID: 240501 Constructed on 12/13/2007.

Location: In the south portion the Elk Grove Subdivision near 12 Gloria Court and east of Outfall 001.

Latitude: 45.63891° Longitude: -111.17993°

Representation: Used as a side or up-gradient water table monitoring point from Outfall 001.

Footnotes:

GWIC well logs and well locations are found in Appendix A.

If a DEQ-approved monitoring well is abandoned, destroyed or decommissioned, or is no longer able to be sampled due to fluctuations in the ground water table, the permittee must install or designate a new well to replace the abandoned, destroyed, decommissioned, or non-viable well.

# 2.7 GROUND WATER QUALITY CHARACTERISTICS

Water sampling results from upgradient wells MW-4C, MW-2B and MW-3B provide an average of 468 microsiemens per centimeter ( $\mu$ S/cm) specific conductance. Therefore, the receiving water is Class I ground water. Class I ground water has a specific conductivity of less than or equal to 1,000  $\mu$ S/cm ( $\mu$ mhos/cm) at 25° C.

Total nitrogen (TN) and *Escherichia coli* bacteria were monitored groundwater limits. TN limit is 7.5 mg/L and *Escherichia coli* bacteria is 1 CFU/100L. For all the wells, *Escherichia coli* bacteria results averaged less than 1 CFU/100 ml in all the quarterly sampling cycles. Total nitrogen was below 7.5 mg/L in all quarterly samples. **Table 6** summarizes the concentration of TN found in ambient and downgradient monitoring wells relative to the outfalls.

| Table 6. Ground Water Monitoring Results – Summary of Total Nitrogen |                            |                       |       |                                          |  |
|----------------------------------------------------------------------|----------------------------|-----------------------|-------|------------------------------------------|--|
| Outfall                                                              | Monitoring<br>Well         | Representation        | Units | Reported Average<br>Value <sup>(1)</sup> |  |
|                                                                      | MW-4                       | downgradient from 001 | mg/L  | 2.90                                     |  |
| 001                                                                  | MW-4A                      | downgradient from 001 | mg/L  | 2.45                                     |  |
| MW-4C                                                                |                            | upgradient from 001   | mg/L  | 1.38                                     |  |
|                                                                      | MW-2 downgradient from 003 |                       | mg/L  | 3.59                                     |  |
| MW-2A downgradient                                                   |                            | downgradient from 003 | mg/L  | 4.02                                     |  |
|                                                                      | MW-2B                      | upgradient from 003   | mg/L  | 2.42                                     |  |
| 004                                                                  | MW-3B                      | upgradient from 004   | mg/L  | 3.45                                     |  |

Footnotes:

For all the wells, Escherichia coli bacteria results averaged < 1 CFU/100 ml.

(1) Data from Self-Reported Discharge Monitoring Reports (DMR)

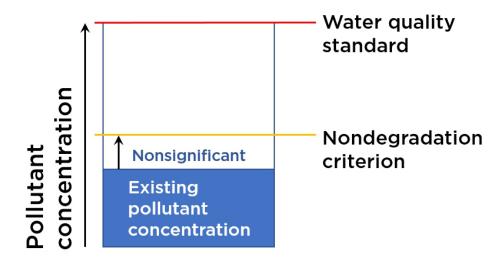
# 3.0 WATER QUALITY STANDARDS AND NONDEGRADATION

Part of DEQ's mission is to protect, sustain, and improve the quality of state waters. Water quality standards provide the basis for effluent limits that DEQ applies to discharge permits (**Section 5**). These standards include three components: designated uses, water quality criteria, and nondegradation policy. DEQ protects all designated uses of state water by basing effluent limits on the most restrictive water quality limitations, intended to protect the most sensitive uses.

### 3.1 DESIGNATED USES

With a specific conductivity of 468  $\mu$ S/cm, the receiving water is Class I ground water and therefore a high-quality water of the State. Class I ground waters must be maintained suitable for the following uses with little or no treatment:

- Public and private drinking water supplies
- Culinary and food processing purposes
- Irrigation
- Drinking water for livestock and wildlife
- Commercial and industrial purposes


DEQ protects all the assigned beneficial uses by protecting the most sensitive. Drinking water is the most sensitive use of this receiving water.

## 3.2 WATER QUALITY CRITERIA

Montana has water quality standards for both surface water and ground water. The numeric criteria for each are different because they must support different uses. DEQ writes permits to protect the most sensitive, thereby protecting all uses. DEQ's ground water standard for nitrate is 10.0 mg/L, as is the standard for nitrate + nitrite (as nitrogen). Class I ground water must be maintained suitable for use as a drinking water supply with little or no treatment, and therefore must meet the corresponding human health standard of 10.0 mg/L total nitrogen. These water quality standards may not be exceeded outside a designated mixing zone (**Section 4**).

### 3.3 Nondegradation

Montana's nondegradation policy is intended to preserve the existing condition of high-quality state waters. Any water whose existing condition is better than the water quality standards must be maintained in that high quality. Nondegradation policy allows discharges to cause only nonsignificant changes in water quality. Changes in water quality that are deemed significant require an authorization to degrade. An authorization to degrade is not an authorization to pollute; the water quality standard must not be exceeded.



DEQ must determine whether the proposed discharge will result in significant changes in water quality.

### 3.4 Nonsignificance

The proposed activity is a NEW OR INCREASED source resulting in a change of existing water quality occurring on or after April 29, 1993 (ARM 17.30.702). The applicable water quality standards for Class I ground water and nonsignificance projections are provided in **Appendix B**. Discharges in compliance with the limitations of this permit are considered nonsignificant. The permit includes monitoring, reporting and corrective action requirements to establish, confirm, and maintain compliance with the permit limits. DEQ must determine whether these water quality changes are significant. Some nonsignificant activities are specified in the Administrative Rules of Montana; other activities are evaluated for significance according to a process provided in the Rules. DEQ evaluated the significance of this discharge using the criteria and methods described below.

For this discharge to ground water, the following nonsignificance criteria are relevant:

Page 17 of 47 FACT SHEET: MGWPCS Permit

No. MTX000110 - Four Corners Water & Sewer District

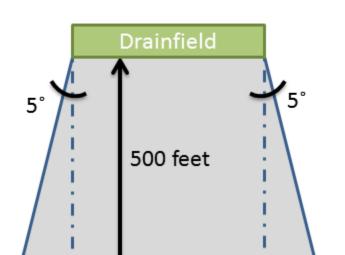
### Nitrogen

Under Montana statute, ground water total nitrogen at or below 7.5 mg/L at the downgradient end of the mixing zone (see **Section 4**) is a nonsignificant change in water quality, so long as the discharge does not cause degradation of surface water. Evaluation of the effects to surface water are discussed below in **Section 3.4.2**. Using the nonsignificance criterion of 7.5 mg/L, DEQ established effluent limits that cause the discharge to comply with ground water nonsignificance/nondegradation criteria at the end of the mixing zone. This is discussed in detail in **Section 5.1**.

## **Phosphorus**

A total phosphorus surface water breakthrough time of greater than 50 years is a nonsignificant change in water quality. The phosphorus criterion requires an analysis to determine a breakthrough time. Breakthrough occurs when the subsurface soils lose their capability to adsorb any more phosphorus, and it reaches surface water.

DEQ's phosphorus breakthrough analysis estimates that phosphorus discharged to ground water from Outfall 001 may reach surface water in 110 years and from Outfall 003 in 159 years. Predicted phosphorus breakthrough greater than 50 years is considered nonsignificant. The previous permit included an effluent limit to reduce the amount of phosphorus discharged. Phosphorus discharge history according to DMR. The phosphorus breakthrough calculations are found in **Appendix B**.


Ground water discharges meeting these criteria are nonsignificant, so long as they do not cause degradation of surface waters.

## 4.0 MIXING ZONE

DEQ authorizes standard mixing zones for total nitrogen discharged from Outfall 001 and Outfall 003. A mixing zone is a specifically defined area of the receiving water where water quality standards may be exceeded. DEQ evaluates the suitability according to criteria established in the Administrative Rules of Montana. The mixing zone is then defined in the permit. The applicant requested a standard mixing zone for this discharge, consistent with previous permit cycles.

A standard mixing zone extends 405 feet downgradient from Outfall 001 and 500 feet downgradient of Outfall 003. The upgradient boundary is equal to the width of the source (measured perpendicular to the of ground water flow direction). The mixing zone widens in the downgradient direction by 5° on either side. The width of the downgradient boundary is calculated by adding the increased width for each side (the tangent of 5° (0.0875) times the mixing zone length) to the width of the upgradient boundary. Standard mixing zones extend 15 feet below the ground water table.

Page **18** of **47**No. MTX000110 – Four Corners Water & Sewer District



The volume of ground water ( $Q_{\text{GW}}$ ) available to mix with the effluent is calculated using Darcy's Equation:  $Q_{\text{GW}}$  = KIA

FACT SHEET: MGWPCS Permit

### Where:

 $Q_{GW}$  = ground water flow volume (feet<sup>3</sup>/day)

K = hydraulic conductivity (feet/day)

I = hydraulic gradient (feet/feet)

A = cross-sectional area (feet<sup>2</sup>) at the downgradient boundary of the mixing zone.

**Table 7** summarizes the variables used in Darcy's equation and the resulting volume of ground water available to mix at Outfall 001. **Table 8** applies to Outfall 003. These values are drawn from the permit application.

| Table 7. Hydrogeologic and Mixing Zone Information - Outfall 001 |                 |                   |  |  |
|------------------------------------------------------------------|-----------------|-------------------|--|--|
| Parameter Units Value                                            |                 |                   |  |  |
| Mixing Zone Type                                                 | -               | Standard          |  |  |
| Authorized Parameters                                            | -               | Total<br>Nitrogen |  |  |
| Ambient Ground Water Concentrations, Total Nitrogen (TN)         | mg/L            | 2.42              |  |  |
| Ground Water Flow Direction                                      | azimuth/bearing | N16°W             |  |  |
| Length of Mixing Zone                                            | feet            | 405               |  |  |
| Thickness of Mixing Zone                                         | feet            | 15                |  |  |
| Outfall Width, Perpendicular to Ground Water Flow Direction      | feet            | 800               |  |  |
| Width of Mixing Zone at Down Gradient Boundary                   | feet            | 870.875           |  |  |
| Cross Sectional Area of Mixing Zone (A)                          | ft²             | 13063.125         |  |  |
| Hydraulic Conductivity (K)                                       | feet/day        | 877               |  |  |
| Hydraulic Gradient (I)                                           | ft/ft           | 0.0068            |  |  |
| Volume of Ground Water Available for Mixing (Q <sub>gw</sub> )   | ft³/day         | 77,903            |  |  |

| Table 8. Hydrogeologic and Mixing Zone Information - Outfall 003 |                 |                   |  |  |
|------------------------------------------------------------------|-----------------|-------------------|--|--|
| Parameter                                                        | Units           | Value             |  |  |
| Mixing Zone Type                                                 | -               | Standard          |  |  |
| Authorized Parameters                                            | -               | Total<br>Nitrogen |  |  |
| Ambient Ground Water Concentrations, Total Nitrogen (TN)         | mg/L            | 1.38              |  |  |
| Ground Water Flow Direction                                      | azimuth/bearing | N3°W              |  |  |
| Length of Mixing Zone                                            | feet            | 500               |  |  |
| Thickness of Mixing Zone                                         | feet            | 15                |  |  |
| Outfall Width, Perpendicular to Ground Water Flow Direction      | feet            | 1121              |  |  |
| Width of Mixing Zone at Down Gradient Boundary                   | feet            | 1208.5            |  |  |
| Cross Sectional Area of Mixing Zone (A)                          | ft²             | 18127.5           |  |  |
| Hydraulic Conductivity (K)                                       | feet/day        | 877               |  |  |
| Hydraulic Gradient (I)                                           | ft/ft           | 0.0066            |  |  |
| Volume of Ground Water Available for Mixing (Q <sub>gw</sub> )   | ft³/day         | 104,926           |  |  |

To determine whether a mixing zone is allowable, DEQ calculates a predicted concentration at the downgradient end of the mixing zone. This mixing calculation follows the following procedure:

- Volume of ground water times the concentration of the parameter = existing load.
- Volume of discharge times the concentration of the parameter = waste load; and
- (Existing load + waste load) / total volume = predicted concentration.

Because the predicted concentration must satisfy the most stringent nonsignificance criterion (**Section 3**), DEQ can calculate water quality based effluent limits (WQBELs) by rearranging the equation and solving for the effluent concentration (**Section 5**).

## **5.0 PERMIT CONDITIONS**

Discharge permits include conditions that ensure compliance with the Montana Water Quality Act and the regulations used to implement it. These conditions include effluent limits as well as any special conditions that DEQ deems necessary to protect the quality of the receiving water.

Montana's numeric water quality standards are published in Circular DEQ-7. Water quality criteria applicable to this permit are summarized below in **Table 9**. The permit establishes effluent limits that will meet water quality standards and nondegradation criteria, thereby protecting beneficial uses and existing high-quality waters. The most restrictive criteria in **Table 9** provide the basis for the effluent limits.

| Table 9. Applicable Ground Water Quality Standards                                                                     |           |                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|--|--|
| Parameter <sup>(1)</sup> Human Health Standard <sup>(2)</sup> Nondegradation Signification Criteria <sup>(3) (4)</sup> |           |                                                       |  |  |
| Total Nitrogen                                                                                                         | 10.0 mg/L | 7.5 mg/L                                              |  |  |
| Phosphorus, Total Inorganic                                                                                            | -         | Surface water breakthrough time greater than 50 years |  |  |

#### Footnotes:

- (1) Includes parameters of concern only.
- (2) Circular DEQ-7 (2019)
- (3) Changes in water quality that do not comply with the listed criteria are significant degradation.
- (4) Changes in receiving ground water quality are not significant if water quality protection practices approved by DEQ have been fully implemented and if the listed significance criteria are met (ARM 17.30.715).

This discharge permit includes numeric WQBELs that restrict the strength and volume of the discharge. The ground water nonsignificance criteria provide the basis for the limits. DEQ calculates WQBELs by rearranging the mixing zone equation (Section 4) and solving for the effluent concentration that satisfies the water quality criteria. DEQ evaluates and recalculates the limits using updated water quality data as part of every permit renewal cycle. In this way, DEQ protects the receiving water quality by continually assessing cumulative impacts to the receiving water.

DEQ calculated the effluent limits using the same method as for the previous permit. DEQ uses updated ambient ground water quality data to re-evaluate the receiving water quality and the assimilative capacity for dilution.

### **5.1 TOTAL NITROGEN EFFLUENT LIMIT**

The nonsignificance criterion of 7.5 mg/L is the most restrictive of the water quality criteria applicable to this permit; therefore, it is the water quality target for this effluent limit. DEQ established the final WQBEL for this discharge by back calculating the effluent concentration that results in 7.5 mg/L at the end of the mixing zone, given the available dilution. Available dilution is determined by recent ground water quality sampling of the receiving water. DEQ calculates an effluent limit that protects receiving water quality and beneficial uses according to the following equation:

$$L_{EFF} = [C_{STD}(Q_{GW} + Q_{EFF})]X - C_{AMB}Q_{GW}X$$

### Where:

LEFF = daily maximum load (lbs/day)

 $C_{STD}$ = most stringent applicable ground water quality standard (mg/L)  $C_{AMB}$ = ambient ground water concentration (mg/L) of total nitrogen (as N)

 $Q_{\mathsf{GW}}$ = ground water volume (gpd) available for mixing at the end of the mixing zone

= volume of effluent (gpd)  $Q_{EFF}$ 

= 8.34x10<sup>-6</sup>, the conversion factor that converts concentration (mg/L) and flow (gpd) into load (lbs/day) Χ

Ambient total nitrogen averaged 2.42 mg/L for Outfall 001. Ambient total nitrogen averaged 1.38 mg/L for Outfall 003.

Outfall 001  $L_{EFF} = [7.5 \text{ mg/L}(582,755 \text{ gpd} + 100,000 \text{ gpd})]8.34x10^{-6}] - (2.42 \text{ mg/L})(582,755 \text{ gpd})(8.34x10^{-6})$ 

L<sub>EFF</sub> = **31 lbs/day.** Thus, the WQBEL for Outfall 001 is **31 lbs/day** total nitrogen.

Outfall 003  $L_{EFF} = [7.5 \text{ mg/L}(784,901 \text{ gpd} + 1,400,000 \text{ gpd})]8.34x10^{-6}] - (1.38 \text{ mg/L})(784,901 \text{ gpd})(8.34x10^{-6})$ 

L<sub>EFF</sub> = **128 lbs/day.** Thus, the WQBEL for Outfall 003 is **128 lbs/day** total nitrogen.

Outfall 004 is a spray irrigation system that is not yet in use. This type of discharge is not regulated by this permit.

Effluent limitations are expressed in load limits of pounds per day. Load limits are more appropriate for discharges to ground water since the long-term loading is the greater concern in absence of aquatic life considerations. Additionally, load limits inherently control both the strength and volume of the discharge.

### 5.2 TOTAL PHOSPHORUS EFFLUENT LIMIT

DEQ determined that phosphorous discharged from Outfall 001 would reach the Gallatin River in 110 years and from Outfall 003 in 159 years. A phosphorous breakthrough time of more than 50 years is considered nonsignificant. There will not be an effluent limit for phosphorus in this permit. The phosphorus breakthrough calculations are found in Appendix B.

Based on the information and analyses presented, DEQ proposes the following numerical effluent limitations in Table 10.

| Table 10. Proposed Final Effluent Limits |                                                |         |     |                             |  |
|------------------------------------------|------------------------------------------------|---------|-----|-----------------------------|--|
| Outfall                                  | Outfall Parameter Units Monthly Avg. Rationale |         |     |                             |  |
| 001                                      | Nitrogen Total (se NI)   Ibo/d                 |         | 31  | Current Limitations Updated |  |
| 003                                      | Nitrogen, Total (as N)                         | lbs/day | 128 | Current Limitations Updated |  |

## **5.3 SPECIAL CONDITIONS**

The following special conditions will be included in the permit.

- 1. Monitoring Wells. Monitoring wells are installed in areas to characterize aquifers and ground water in the vicinity of each permitted outfall and mixing zone. The wells are generally located in both Up- and Down-gradient locations. Locations of the existing monitoring wells are depicted in Appendix A. These wells provide water quality data to ensure permit compliance and to provide protection of downgradient drinking water sources.
  - Monitoring wells are required to monitor the mixing zones for any active outfalls.
  - The design and installation of any new wells should conform to past installations.
  - The sampling schedule and analytic parameters should conform to those listed in Table 13.
  - Reporting of analytic data for all wells must be done using the DMRs.

| Parameter                 | Units      | Ground Water Standard in<br>Monitoring Wells <sup>(1)(2)(3)</sup><br>30-Day Average | Rationale                        |
|---------------------------|------------|-------------------------------------------------------------------------------------|----------------------------------|
| Nitrogen, Total (as N)    | lbs/day    | 7.5                                                                                 | Previous Permit Limit            |
| Escherichia coli Bacteria | CFU /100mL | <1                                                                                  | Ground Water<br>Characterization |

### Footnotes:

The above limits are carried over from the 2018 DEQ MGWPCS Permit without change.

These standards establish the maximum allowable changes in ground water quality. They are also the basis for limiting discharges to ground water, ARM 17.30.1005(1); Circular DEQ-7 (2019) and ARM 17.30.715(1)(d).

Effluent discharge limits are detailed in Table 10.

CFU = Colony Forming Unit

Beneficial Uses are detailed in ARM 17.30.1006

- (1) The list only includes identified parameters of interest.
- (2) See definition in Part V of permit. The 24-hour geometric mean shall not exceed this value.
- (3) Changes in receiving ground water quality are not significant if water quality protection practices approved by the DEQ have been fully implemented and if the listed nonsignificance criteria are met.
- 2. **Progress Reporting**. Submit a report to DEQ at the end of each calendar year summarizing the progress made on the work planned or completed on any modifications to the Four Corners Water and Sewer District Wastewater System.

# **6.0 MONITORING AND REPORTING REQUIREMENTS**

DEQ requires effluent and ground water monitoring to assure compliance with the effluent limitations and therefore water quality standards. Effluent monitoring and ground water monitoring is required as a condition of this permit. All monitoring and sampling required by this permit must be representative; therefore, the permit identifies specific monitoring locations. Monitoring requirements and rationale are summarized below.

### 6.1 EFFLUENT MONITORING

This permit includes numeric effluent limitations with specific magnitudes and durations to ensure the discharge will not cause or contribute to an exceedance of an applicable water quality standard (**Section 3**). Accordingly, the permittee is required to monitor and report at a specified frequency to demonstrate compliance with these limitations. Effluent samples and discharge flow measurements must be representative of the nature and volume of the effluent. The effluent sample locations (EFF-001)(EFF-003) and (EFF-004) correspond to Outfall 001, 003 and 004. The permittee is required to report DMR's for all active outfall discharges. The permittee is required to install, maintain, and report flow measurements using a flow-measuring device capable of measurements that are within 10 percent of the actual flow. The flow measuring devices (FM-001)(FM-003) and (FM-004) correspond to Outfall 001, 003 and 004. The flow measuring device must be installed and in operating condition prior to discharge.

Effluent monitoring and reporting requirements are summarized in **Table 12**.

Table 12. Effluent Monitoring and Reporting Requirements – All Active Outfalls, Separately

| Parameter                                  | Monitor<br>Location        | Units                  | Sample<br>Type <sup>(1)</sup> | Minimum<br>Sample<br>Frequency | Reporting<br>Requirements <sup>(1)(2)(3)(4)</sup>                | Report<br>Freq. | Rationale            |
|--------------------------------------------|----------------------------|------------------------|-------------------------------|--------------------------------|------------------------------------------------------------------|-----------------|----------------------|
| Flow Rate,<br>Effluent <sup>(4)</sup>      | FM-001<br>FM-003<br>FM-004 | Gallons<br>/day        | Continuous                    | Continuous                     | Daily Maximum<br>30 Day Average<br>Quarterly Average             | Monthly         | Permit<br>Compliance |
| Escherichia coli<br>Bacteria               |                            | CFU/<br>100mL          | Grab                          | Monthly                        | Daily Maximum<br>Quarterly Average <sup>(4)</sup>                | Monthly         | Permit<br>Compliance |
| Total<br>Suspended<br>Solids (TSS)         |                            | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average <sup>(5)</sup>                | Monthly         | Permit<br>Compliance |
| Biological<br>Oxygen<br>Demand             |                            | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit<br>Compliance |
| Chloride                                   |                            | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit<br>Compliance |
| Nitrogen, Nitrite<br>+ Nitrate (as N)      | EFF-001<br>EFF-003         | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit<br>Compliance |
| Nitrogen, Total<br>Ammonia (as N)          | EFF-004                    | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit<br>Compliance |
| Nitrogen, Total<br>Kjeldahl<br>(TKN)(as N) |                            | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit<br>Compliance |
| Nitrogen, Total                            |                            | mg/L                   | Calculate                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit               |
| (as N) <sup>(5)</sup>                      |                            | Ibs/day <sup>(6)</sup> | Calculate                     | Monthly                        | Daily Maximum <sup>(7)</sup><br>Quarterly Average <sup>(8)</sup> | Monthly         | Compliance           |
| Phosphorus,<br>Total (as P)                |                            | mg/L                   | Composite                     | Monthly                        | Daily Maximum<br>Quarterly Average                               | Monthly         | Permit<br>Compliance |

### Footnotes:

CFU = Colony Forming Units

If no discharge occurs during the reporting period, "no discharge" shall be recorded on the effluent Discharge Monitoring Report (DMR) report forms. Grab samples will each represent concentration for a 24-hour period.

Parameter analytical methods shall be in accordance with the Code of Federal Regulations, 40 CFR Part 136, unless specified above.

- (1) See definitions in Part V of the permit.
- (2) Daily Maximum: Report highest measured daily value for the reporting period on Discharge Monitoring Report (DMR) form.
- (3) The geometric mean must be reported if multiple samples are taken during a reporting period. This is used for bacterial sampling.
- (4) Requires recording device or totalizing meter, must record daily effluent volume.
- (5) Total Nitrogen is the sum of Nitrate + Nitrite + Total Kjeldahl Nitrogen.
- (6) Load Calculation: lbs/day = (mg/L) x flow  $(gpd) x [8.34 x <math>10^{-6}]$ .
- (7) Daily Maximum Load Calculation: lbs/day = the maximum of all Calculated individual daily average loads (lbs/day) recorded during the period.
- (8) Quarterly Average Load Calculation: lbs/day = the average of all Calculated individual daily average loads (lbs/day) recorded during the period.
- (9) Annual Load Calculation: lbs/year = (mg/L) x flow (gpd) x [8.34 x 10<sup>-6</sup>] x 365 (days/year).
- (10) Annual Load Calculation: Ibs/year = the total average of all Calculated individual daily average loads (Ibs/day) recorded during the calendar year, multiplied by 365 (days/year).
- (11) Annual maximum load shall be reported (DMR) on an annual basis (due January 28 each year of the permit cycle).

## **6.2 GROUND WATER MONITORING**

Ground water monitoring was established by the previous permit and will continue in the current permit. Ground water monitoring includes both water quality sampling and water level monitoring.

This permit requires ground water monitoring to provide long term ambient and downgradient characterization of the aquifer. Ground water monitoring will be required at monitoring wells MW-4, MW-4A, MW-4C, MW-2, MW-2A, MW-2B, and MW-3B. Data collected via ground water monitoring will be used for mixing zone evaluation and aquifer characterization in future permit renewals, and for compliance monitoring. Ground water monitoring and reporting requirements are summarized in the table below. Sampling and reporting requirements shall commence upon the effective date of the permit.

Ground water monitoring and reporting requirements are summarized in **Table 13**. All analytical methods must be in accordance with the Code of Federal Regulations, 40 CFR Part 136 for each monitored parameter.

| Table 13. Ground Water Monitoring and Reporting Requirements (For Monitoring Wells) |                                      |               |                               |                                  |                                    |                        |                                           |  |
|-------------------------------------------------------------------------------------|--------------------------------------|---------------|-------------------------------|----------------------------------|------------------------------------|------------------------|-------------------------------------------|--|
| Parameter<br>/Method                                                                | Monitor<br>Location <sup>(1)</sup>   | Units         | Sample<br>Type <sup>(2)</sup> | Minimum<br>Sampling<br>Frequency | Reporting<br>Requirements          | Reporting<br>Frequency | Rationale                                 |  |
| Escherichia<br>coli Bacteria                                                        |                                      | CFU<br>/100ml | Grab                          | 1/Quarter                        | Daily Maximum<br>Quarterly Average | Quarterly              |                                           |  |
| Chloride<br>(as CI)                                                                 |                                      | mg/L          | Grab                          | 1/Quarter                        | Daily Maximum<br>Quarterly Average | Quarterly              |                                           |  |
| Nitrogen, Total<br>(as N)                                                           | MW-2,<br>MW-2A,<br>MW-2B,            | mg/L          | Grab                          | 1/Quarter                        | Daily Maximum<br>Quarterly Average | Quarterly              | Aquifer<br>Characterization<br>and Sentry |  |
| Nitrate, (as N)                                                                     | MW-3B,<br>MW-4,<br>MW-4A, &<br>MW-4C | mg/L          | Grab                          | 1/Quarter                        | Daily Maximum<br>Quarterly Average | Quarterly              | Wells for<br>surrounding<br>subdivisions  |  |
| Specific<br>Conductivity @<br>25°C                                                  |                                      | μS/cm         | Grab                          | 1/Quarter                        | Daily Maximum<br>Quarterly Average | Quarterly              |                                           |  |
| Static Water<br>Level (SWL) <sup>(4)</sup>                                          |                                      | ft-bmp        | Instantaneous                 | 1/Quarter                        | Daily Maximum<br>Quarterly Average | Quarterly              |                                           |  |

### Footnotes:

This permit will require monitoring the shallow aquifer up-gradient of any active outfalls and beyond the downgradient edge of the Mixing Zone.

CFU = Colony Forming Units

ft-bmp = feet below measuring point

s.u. = standard units

Monitoring of wells shall commence in the quarter prior to the quarter in which the Outfall begins service.

Parameter analytical methods shall be in accordance with the Code of Federal Regulations, 40 CFR Part 136, unless specified above. See definitions in Part V of the permit.

- (1) Refer to Appendix A of the Fact Sheet for the location of monitoring wells.
- (2) Daily Maximum: Report highest measured daily value for the reporting period on Discharge Monitoring Report (DMR).
- (3) The geometric mean must be reported if more than one sample is taken during a reporting period.
- (4) Measuring point (point of reference) for SWL measurements shall be from top of casing and measured to within 1/100th of one foot.

Page **25** of **47**No. MTX000110 – Four Corners Water & Sewer District

FACT SHEET: MGWPCS Permit

# **COMPLIANCE SCHEDULE**

The actions listed in **Table 14** below must be completed on or before the respective scheduled completion date. A report documenting each respective action must be received by DEQ on or before the scheduled reporting date. Completion of all actions or deliverables must be reported to DEQ in accordance with Part II.D and Part IV.G of the permit.

| Table 14. Compliance Schedule                                                                                                 |                       |                                                                |                                                                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Action                                                                                                                        | Freq.                 | Scheduled<br>Completion<br>Date of Action <sup>(1)</sup>       | Scheduled Report Due Date.(2)                                                                                                                                                |  |  |
| Effluent sampling will be conducted for each unique waste stream if it differs in source, nature, or degree of treatment.     | Quarterly<br>sampling | Ongoing for all unique active waste streams going to outfalls. | Submit analytic data to NetDMR prior to the beginning of the quarter following the sampling event. Include an initial report to DEQ with mapped locations of sampling sites. |  |  |
| Submit a report to DEQ summarizing progress made on work planned or completed on construction of modifications to the system. | Yearly                | At the end of each year                                        | Before the end of the 1st quarter of the following year.                                                                                                                     |  |  |

#### Footnotes:

- (1) The actions must be completed on or before the scheduled completion dates.
- (2) Reports must be received by DEQ on or before the scheduled report due dates. The reports must include all information as required for each applicable action.

# **PUBLIC NOTICE**

Legal notice information for water quality discharge permits are listed at the following website: <a href="http://deq.mt.gov/Public/notices/wqnotices">http://deq.mt.gov/Public/notices/wqnotices</a>. Public comments on this proposal are invited any time prior to close of business on February 11, 2021. Comments may be directed to:

FACT SHEET: MGWPCS Permit

DEQWPBPublicComments@mt.gov

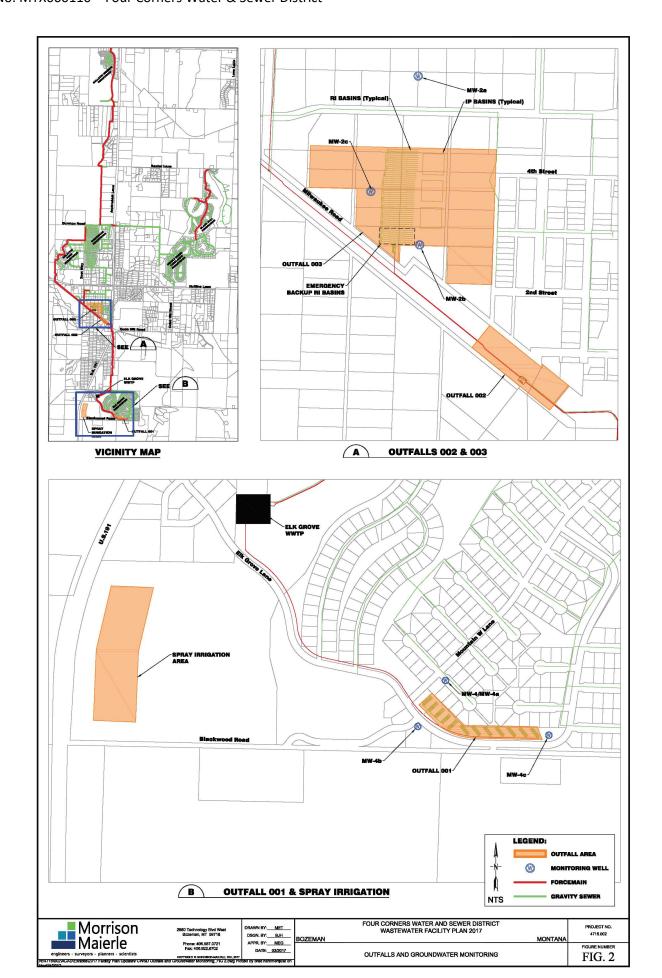
or to:

Montana Department of Environmental Quality Water Protection Bureau PO Box 200901 Helena, MT 59620

All comments received or postmarked prior to the close of the public comment period will be considered in the formulation of the final permit. DEQ will respond to all substantive comments pertinent to this permitting action and may issue a final decision within thirty days of the close of the public comment period.

All persons, including the applicant, who believe any condition of the draft permit is inappropriate, or that DEQ's tentative decision to deny an application, terminate a permit, or prepare a draft permit is inappropriate, shall raise all reasonably ascertainable issues and submit all reasonably available arguments supporting their position by the close of the public comment period (including any public hearing). All public comments received for this draft permit will be included in the administrative record and will be available for public viewing during normal business hours.

Copies of the public notice are mailed to the applicant, state, and federal agencies, and interested persons who have expressed interest in being notified of permit actions. A copy of the distribution list is available in the administrative record for this draft permit. Electronic copies of the public notice, draft permit, fact sheet, and draft environmental assessment are available at the following website: <a href="http://deq.mt.gov/Public/notices/wqnotices">http://deq.mt.gov/Public/notices/wqnotices</a>.


Any person interested in being placed on the mailing list for information regarding this permit may contact the DEQ Water Protection Bureau at (406) 444-5546 or email <a href="mailto:DEQWPBPublicComments@mt.gov">DEQWPBPublicComments@mt.gov</a>. All inquiries will need to reference the permit number (MTX000110), and include the following information: name, address, and phone number.

During the public comment period provided by the notice, DEQ will accept requests for a public hearing. A request for a public hearing must be in writing and must state the nature of the issue proposed to be raised in the hearing.

Page **27** of **47** FACT SHEET: MGWPCS Permit

No. MTX000110 – Four Corners Water & Sewer District

# **APPENDIX A – MONITORING WELL INFORMATION**





OUTFALLS 002 & 003



#### MONTANA WELL LOG REPORT

This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is compiled electronically from the contents of the Ground Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.

Site Name: UTILITY SOLUTIONS. .

**GWIC Id: 224342** 

Section 1: Well Owner(s) 1) UTILITY SOLUTIONS (MAIL)

P.O. BOX 10098

BOZEMAN MT 59719 [03/16/2006]

Section 7: Well Test Data

Total Depth: 25 Static Water Level: 13 Water Temperature:

Air Test \*

15 gpm with drill stem set at 20 feet for 0.25 hours. **Section 2: Location** 

Time of recovery <u>0.25</u> hours. **Quarter Sections Township** Section Range Recovery water level 13 feet. 02S 04E 14 SE1/4 NW1/4 NE1/4 Pumping water level feet. County Geocode

**GALLATIN** Latitude Longitude Geomethod **Datum** 45.668311 -111.190922 TRS-SEC NAD83

\* During the well test the discharge rate shall be as uniform as Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of

the well. Sustainable yield does not include the reservoir of the

Addition Block Lot well casing. **NORTH STAR** 

Section 3: Proposed Use of Water

MONITORING (1)

**Section 8: Remarks** MW-2

Section 4: Type of Work Drilling Method: ROTARY Status: NEW WELL

**Section 5: Well Completion Date** 

Date well completed: Thursday, March 16, 2006

Section 9: Well Log **Geologic Source** Unassigned From To Description

O

5

5 TOPSOIL

25 SANDY GRAVEL

12 GRAVEL

| Section 6: Well Construction Details |
|--------------------------------------|
| Borehole dimensions                  |
| From To Diameter                     |
|                                      |

0 25

Casing

| ı |      |    |          | Wall      | Pressure |        |            |
|---|------|----|----------|-----------|----------|--------|------------|
| ŀ | From | То | Diameter | Thickness | Rating   | Joint  | Туре       |
| ŀ | 2    | 3  | 6        | 0.250     |          | WELDED | A53B STEEL |
|   | 2    | 10 | 2        |           |          | FLUSH  | PVC-SCHED  |
| ľ | .2   | 10 | 2        |           |          | THREAD | 40         |

Completion (Perf/Screen)

|      |    |          | # of     | Size of  |                           |
|------|----|----------|----------|----------|---------------------------|
| From | То | Diameter | Openings | Openings | Description               |
| 10   | 25 | 2        |          | 020      | SCREEN-CONTINUOUS-<br>PVC |

Annular Space (Seal/Grout/Packer)

| From | То | Description | Cont.<br>Fed? |
|------|----|-------------|---------------|
| 0    | 7  | BENTONITE   |               |
| 7    | 25 | SAND        |               |

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is

true to the best of my knowledge.

Company: KEVIN HAGGERTY DRILLING INC

License No: MWC-94 Date 3/16/2006 Completed:

### MW-2A

### **MONTANA WELL LOG REPORT**

Site Name: UTILITY SOLUTIONS, .

**GWIC Id: 224341** 

Section 1: Well Owner(s) 1) UTILITY SOLUTIONS (MAIL)

P.O. BOX 10098

BOZEMAN MT 59719 [03/14/2006]

Section 7: Well Test Data

Total Depth: 40 Static Water Level: 13 Water Temperature:

Air Test \*

**Section 2: Location** 

Township Range Section **Quarter Sections** SE1/4 NW1/4 NE1/4 028 04F 14 Geocode County **GALLATIN** 

Geomethod Latitude Longitude **Datum** 45.668311 -111.190922 TRS-SEC NAD83

Addition **Block** Lot **NORTH STAR** 

20 gpm with drill stem set at 35 feet for 0.25 hours. Time of recovery 0.25 hours.

Recovery water level 13 feet. Pumping water level \_ feet.

\* During the well test the discharge rate shall be as uniform as Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the

well casing.

Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work Drilling Method: ROTARY Status: NEW WELL

Ground Surface Altitude

Section 5: Well Completion Date

Date well completed: Tuesday, March 14, 2006

**Section 6: Well Construction Details** 

Wall

**Borehole dimensions** From To Diameter 0 40 Casing

| -2 | 3 6  | 0.250 |  |
|----|------|-------|--|
| -2 | 25 2 |       |  |

From To Diameter Thickness Rating

Completion (Perf/Screen)

|      |    |          | # of     | Size of  |                       |
|------|----|----------|----------|----------|-----------------------|
| From | То | Diameter | Openings | Openings | Description           |
| 25   | 40 | 2        |          | いつい      | SCREEN-CONTINUOUS-PVC |

Pressure

Joint

WELDED

FLUSH

THREAD

Annular Space (Seal/Grout/Packer)

|      |    |             | Cont. |
|------|----|-------------|-------|
| From | То | Description | Fed?  |
| 0    | 21 | BENTONITE   |       |
| 21   | 40 | SAND        |       |

Section 8: Remarks

MW-2A

Section 9: Well Log **Geologic Source** 

Unassigned

|            | From    | То     | Description   |
|------------|---------|--------|---------------|
|            | 0       | 5      | TOPSOIL       |
|            | 5       | 35     | GRAVELLY SAND |
|            | 35      | 40     | SAND          |
|            |         |        |               |
|            |         |        |               |
|            |         |        |               |
|            |         |        |               |
|            |         |        |               |
|            |         |        |               |
| Type       |         |        |               |
| A53B STEEL |         |        |               |
| PVC-SCHED  |         |        |               |
| 40         |         |        |               |
|            |         |        |               |
|            |         |        |               |
|            | Driller | Certif | fication      |

#### Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is

true to the best of my knowledge.

Name:

Company: KEVIN HAGGERTY DRILLING INC

License No:MWC-94

Date 3/14/2006 Completed:

### No. MTX000110 - Four Corners Water & Sewer District

### MW-2B

### **MONTANA WELL LOG REPORT**

Site Name: UTILITY SOLUTIONS, .

**GWIC Id: 224343** 

Section 1: Well Owner(s) 1) UTILITY SOLUTIONS (MAIL)

P.O. BOX 10098

BOZEMAN MT 59719 [03/17/2006]

Section 7: Well Test Data

Time of recovery 0.25 hours. Recovery water level 13 feet. Pumping water level \_ feet.

FACT SHEET: MGWPCS Permit

Total Depth: 25 Static Water Level: 13 Water Temperature:

Air Test \*

15 gpm with drill stem set at 20 feet for 0.25 hours.

| Section 2: Location |          |       |         |                   |  |  |
|---------------------|----------|-------|---------|-------------------|--|--|
|                     | Township | Range | Section | Quarter Sections  |  |  |
|                     | 02S      | 04E   | 14      | SE1/4 SW1/4 NE1/4 |  |  |
|                     | _        |       |         |                   |  |  |

Geocode County **GALLATIN** Geomethod Latitude Longitude **Datum** 

TRS-SEC NAD83

45.664664 -111.190922 \* During the well test the discharge rate shall be as uniform as Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the Addition **Block** Lot well casing.

**NORTH STAR** 

**Section 8: Remarks** 

Section 9: Well Log

Description

25 GRAVELLY SAND

5 TOPSOIL

8 GRAVEL

**Geologic Source** 

Unassigned

From To

0

5

8

MW-2B

Section 3: Proposed Use of Water MONITORING (1)

Section 4: Type of Work Drilling Method: ROTARY Status: NEW WELL

**Section 5: Well Completion Date** Date well completed: Friday, March 17, 2006

**Section 6: Well Construction Details** 

**Borehole dimensions** From To Diameter 0 25

Casing

|      |    |          | Wall      | Pressure |        |                 |
|------|----|----------|-----------|----------|--------|-----------------|
| From | То | Diameter | Thickness | Rating   | Joint  | Туре            |
| -2   | 4  | 6        | 0.250     |          | WELDED | A53B STEEL      |
| -2   | 10 | 2        |           |          | -      | PVC-SCHED<br>40 |

Completion (Perf/Screen)

|      |    |          | # of     | Size of  |                       |
|------|----|----------|----------|----------|-----------------------|
| From | То | Diameter | Openings | Openings | Description           |
| 10   | 25 | 2        |          | 020      | SCREEN-CONTINUOUS-PVC |

Annular Space (Seal/Grout/Packer)

|      |    |             | Cont. |
|------|----|-------------|-------|
| From | То | Description | Fed?  |
| 0    | 7  | BENTONITE   |       |
| 7    | 25 | SAND        |       |

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is

true to the best of my knowledge.

Name:

Company: KEVIN HAGGERTY DRILLING INC

License No:MWC-94

Date 3/17/2006

Completed:

#### MW-2C

|                                   |             |           | МО              | NTANA WEL  | L LOG                                          | REPO       | ORT                                                                                                         |  |  |
|-----------------------------------|-------------|-----------|-----------------|------------|------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Site Name: UTII                   | ITV COLI    | ITIONS    |                 |            | Santia                                         | n 7: V     | Vell Test Data                                                                                              |  |  |
| GWIC Id: 22434                    |             | TIONS, .  | •               |            |                                                |            |                                                                                                             |  |  |
| 044.14.11                         | •           |           |                 |            | Total D                                        |            | 25<br>Level: 13                                                                                             |  |  |
| Section 1: Well                   |             | 4411      |                 |            |                                                |            | erature:                                                                                                    |  |  |
| 1) UTILITY SOLI<br>P.O. BOX 10098 |             | /IAIL)    |                 |            | vvator                                         | Citip      | oraturo.                                                                                                    |  |  |
| BOZEMAN MT 5                      |             | 17/2006]  |                 |            | Air Tes                                        | st *       |                                                                                                             |  |  |
| Section 2: Loca                   | tion        |           |                 |            |                                                |            | h drill stem set at 20 feet for 0.25 hours.                                                                 |  |  |
| Township                          | Range       | Section   |                 | Sections   |                                                |            | very <u>0.25</u> hours.                                                                                     |  |  |
| 028                               | 04E         | 14        |                 | N1/4 NE1/4 |                                                |            | ater level <u>13</u> feet.<br>ter level <u>feet</u> .                                                       |  |  |
| GALLATIN                          | ınty        |           | Geoc            | ode        | Таттрп                                         | ig wa      | ter level _ leet.                                                                                           |  |  |
| Latitude                          | Longitu     | ude       | Geomethod       | Datum      |                                                |            |                                                                                                             |  |  |
| 45.666487                         | -111.190    |           | TRS-SEC         | NAD83      | * Durin                                        | g the      | well test the discharge rate shall be as uniform as                                                         |  |  |
| Ground Surface                    | Altitude    | Ground S  | Surface Method  | Datum Date | possibl                                        | e. Thi     | is rate may or may not be the sustainable yield of<br>stainable yield does not include the reservoir of the |  |  |
| Addition                          |             |           | Block           | Lot        | well ca                                        |            | stamable yield does not include the reservoir of the                                                        |  |  |
| NORTH STAR                        |             |           |                 |            | wen ea                                         | onig.      |                                                                                                             |  |  |
| Section 3: Prop<br>MONITORING (1) | osed Use    | of Water  |                 |            | Section 8: Remarks<br>MW-2C                    |            |                                                                                                             |  |  |
| Section 4: Type                   | DTARY       |           |                 |            | Section 9: Well Log Geologic Source Unassigned |            |                                                                                                             |  |  |
| Status: NEW WEL                   | _           |           |                 |            | From                                           |            | Description                                                                                                 |  |  |
| Section 5: Well                   | Completic   | on Date   |                 |            | 0                                              |            | TOPSOIL                                                                                                     |  |  |
| Date well complete                |             |           | 2006            |            | 5                                              |            | GRAVEL                                                                                                      |  |  |
|                                   | •           |           |                 |            | 10                                             | 25         | GRAVELLY SAND                                                                                               |  |  |
| Section 6: Well                   |             | tion Deta | ils             |            |                                                |            |                                                                                                             |  |  |
| Borehole dimens                   | 1           |           |                 |            |                                                |            |                                                                                                             |  |  |
| From To Diamete                   | -           |           |                 |            |                                                |            |                                                                                                             |  |  |
| 0 25 6                            | <u> </u>    |           |                 |            |                                                |            |                                                                                                             |  |  |
| Casing                            |             | _         | 1               |            |                                                |            |                                                                                                             |  |  |
| 5                                 | Wall        | Pressure  |                 | T          |                                                |            |                                                                                                             |  |  |
| From To Diamete<br>-2 3 6         | 0.250       | Raung     | Joint<br>WELDED | A53B STEEL |                                                |            |                                                                                                             |  |  |
| iii                               | 0.230       |           | FLUSH           | PVC-SCHED  |                                                |            |                                                                                                             |  |  |
| -2 10 2                           |             |           | THREAD          | 40         |                                                |            |                                                                                                             |  |  |
| Completion (Perf                  | I           |           |                 | -          |                                                |            |                                                                                                             |  |  |
|                                   |             | Size of   |                 |            |                                                |            |                                                                                                             |  |  |
| From To Diamete                   | Openings    | Openings  |                 |            |                                                |            | fication                                                                                                    |  |  |
| 10 25 2                           |             | .020      | SCREEN-CON      | ITINUOUS-  |                                                |            | formed and reported in this well log is in compliance                                                       |  |  |
| Annular Space (S                  | eal/Grout/E | Packer)   | PVC             |            |                                                |            | stana well construction standards. This report is est of my knowledge.                                      |  |  |
| -initial opace (3                 | Cont.       | uonoi j   |                 |            | ii de lo                                       |            |                                                                                                             |  |  |
| Trainion (                        |             |           |                 |            |                                                |            |                                                                                                             |  |  |
| From To Description Fed?          |             |           |                 |            |                                                |            |                                                                                                             |  |  |
|                                   |             |           |                 |            |                                                |            | License No:MWC-94                                                                                           |  |  |
| 0 7 BENTON                        |             |           |                 |            |                                                | г          |                                                                                                             |  |  |
|                                   |             |           |                 |            | Co                                             | ם<br>mple: | Date<br>3/17/2006                                                                                           |  |  |

### **MW-3**

#### **MONTANA WELL LOG REPORT** Site Name: UTILITY SOLUTIONS LLC. Section 7: Well Test Data **GWIC Id: 240500** Total Depth: 35 Static Water Level: 11.8 Section 1: Well Owner(s) Water Temperature: 1) UTILITY SOLUTIONS, LLC. (MAIL) P.O. BOX 10098 Air Test \* BOZEMAN MT 59719 [12/12/2007] 25 gpm with drill stem set at 30 feet for 1 hours. **Section 2: Location** Time of recovery 1 hours. Section **Quarter Sections** Township Range SW1/4 SW1/4 SE1/4 Recovery water level 11.8 feet. 028 04F 23 Pumping water level feet. County Gencode **GALLATIN** Latitude Longitude Geomethod **Datum** NAD27 45.641657 -111.195674 TRS-TWN \* During the well test the discharge rate shall be as uniform as Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the Addition **Block** well casing. **ELK GROVE** Section 8: Remarks Section 3: Proposed Use of Water **ELK GROVE MW-3** MONITORING (1) Section 9: Well Log Section 4: Type of Work **Geologic Source** Drilling Method: ROTARY Unassigned Status: NEW WELL From To Description **Section 5: Well Completion Date** 0 4 TOPSOIL Date well completed: Wednesday, December 12, 2007 35 GRAVEL & SAND 4 **Section 6: Well Construction Details Borehole dimensions** From To Diameter 0 35 Casing Wall Pressure From To Diameter Thickness Rating Joint Type -2.5 3.56 0.25 WELDED A53B STEEL FLUSH PVC-SCHED 7.82 THREAD 40 Completion (Perf/Screen) # of Size of Driller Certification From To Diameter Openings Openings Description SCREEN-CONTINUOUS-All work performed and reported in this well log is in compliance 27.82 PVC with the Montana well construction standards. This report is Annular Space (Seal/Grout/Packer) true to the best of my knowledge. Cont Name: KEVIN HAGGERTY From To Description Fed? Company: KEVIN HAGGERTY DRILLING INC 5.8 BENTONITE License No: MWC-94 Date 12/12/2007 35 10-20 SAND Completed:

# MW-3B

|                                         |       |                      |             |           | MO            | NTANA WEL  | L LOG                                 | REP                                    | ORT                                                   |  |
|-----------------------------------------|-------|----------------------|-------------|-----------|---------------|------------|---------------------------------------|----------------------------------------|-------------------------------------------------------|--|
|                                         |       | ne: UTIL<br>: 240498 | ITY SOLU    | ITIONS L  | LC.           |            | Section                               | on 7: V                                | Well Test Data                                        |  |
| • • • • • • • • • • • • • • • • • • • • |       |                      |             |           |               |            | Total [                               | Depth:                                 | : 25                                                  |  |
| Section                                 | on '  | 1: Well (            | Owner(s)    |           |               |            |                                       |                                        | r Level: 6                                            |  |
|                                         |       |                      | ITIONS, L   | LC. (MAII | _)            |            | Water                                 | Temp                                   | perature:                                             |  |
| ,                                       |       | K 10098              | , _         |           | -,            |            |                                       |                                        |                                                       |  |
| BOZE                                    | ΕMΑ   | N MT 59              | 9719 [12/1  | 1/2007]   |               |            | Air Te                                | st *                                   |                                                       |  |
| Section                                 | on 2  | 2: Locat             | ion         |           |               |            |                                       |                                        | th drill stem set at 20 feet for 1 hours.             |  |
| To                                      | wns   | hip                  | Range       | Section   | Quarter       | Sections   |                                       |                                        | overy <u>1</u> hours.                                 |  |
|                                         | 02S   | 3                    | 04Ē         | 26        | SW1/4 N\      | N¼ NE¼     |                                       |                                        | ater level <u>6</u> feet.                             |  |
|                                         |       | Cou                  | nty         |           | Geoco         | ode        | Pumpi                                 | ing wa                                 | ater level _ feet.                                    |  |
| GALLA                                   | ATIN  | ١                    |             |           |               |            |                                       |                                        |                                                       |  |
|                                         | atitu |                      | Longitu     |           | Geomethod     | Datum      |                                       |                                        |                                                       |  |
|                                         |       | 364                  | -111.195    |           | TRS-TWN       |            |                                       |                                        | well test the discharge rate shall be as uniform as   |  |
| Grou                                    | und   | Surface              | Altitude    | Ground S  | urface Method | Datum Date |                                       |                                        | is rate may or may not be the sustainable yield of    |  |
| A al al : 4:                            |       |                      |             |           | Disak         | 1 -4       |                                       |                                        | stainable yield does not include the reservoir of the |  |
| Additi<br>ELK G                         |       | \/⊏                  |             |           | Block         | Lot        | well ca                               | asıng.                                 |                                                       |  |
| LLING                                   | 110   | ٧L                   |             |           |               |            |                                       |                                        |                                                       |  |
|                                         |       | 3: Propo<br>RING (1) | sed Use     | of Water  |               |            | Section 8: Remarks<br>ELK GROVE MW-3B |                                        |                                                       |  |
|                                         |       | ,                    |             |           |               |            | Soction                               | n Q: V                                 | Noll Log                                              |  |
| Section                                 | on 4  | 4: Type              | of Work     |           |               |            |                                       | Section 9: Well Log<br>Geologic Source |                                                       |  |
| Drilling                                | ј Ме  | thod: RO             | TARY        |           |               |            | Unassigned                            |                                        |                                                       |  |
| Status                                  | : NE  | W WELL               |             |           |               |            |                                       | 1                                      |                                                       |  |
|                                         |       |                      |             |           |               |            | From                                  | 1 -                                    | Description                                           |  |
|                                         |       |                      | Completio   |           |               |            | 0                                     |                                        | TOPSOIL & SANDY CLAY                                  |  |
| Date v                                  | vell  | completed            | d: Tuesday, | Decembe   | r 11, 2007    |            | 4                                     | 25                                     | 5 GRAVEL & SAND                                       |  |
| •                                       |       |                      |             |           |               |            |                                       | <u> </u>                               |                                                       |  |
|                                         |       |                      | Construct   | ion Detai | IS            |            |                                       | 1                                      |                                                       |  |
|                                         | -     | dimension            | ons         |           |               |            |                                       |                                        |                                                       |  |
|                                         |       | Diameter             |             |           |               |            |                                       |                                        |                                                       |  |
| 0                                       | 25    | 6                    |             |           |               |            |                                       |                                        |                                                       |  |
| Casin                                   | g     |                      |             |           |               |            |                                       |                                        |                                                       |  |
|                                         |       |                      | Wall        | Pressure  |               |            |                                       |                                        |                                                       |  |
| From                                    | To    | Diameter             | Thickness   | Rating    | Joint         | Туре       |                                       |                                        |                                                       |  |
| -1.5                                    | 3.5   | 6                    | 0.25        |           | WELDED        | A53B STEEL |                                       |                                        |                                                       |  |
| -1                                      | 4     | 2                    |             |           | FLUSH         | PVC-SCHED  |                                       |                                        |                                                       |  |
|                                         |       |                      |             |           | THREAD        | 40         |                                       |                                        |                                                       |  |
| Comp                                    | letic | on (Perf/S           |             |           |               |            |                                       |                                        |                                                       |  |
|                                         |       |                      | # of        | Size of   |               |            |                                       |                                        |                                                       |  |
| From                                    | То[   | Diameter             | Openings    | Openings  | Description   |            |                                       |                                        | ification                                             |  |
| 4                                       | 24 2  | 2                    |             | .020      | SCREEN-CON    | TINUOUS-   |                                       |                                        | formed and reported in this well log is in compliance |  |
|                                         |       |                      |             |           | PVC           |            |                                       |                                        | ntana well construction standards. This report is     |  |
| Annul                                   | ar S  | Space (Se            | al/Grout/P  | acker)    |               |            | true to                               | the b                                  | est of my knowledge.                                  |  |
|                                         |       |                      | Cont.       |           |               |            |                                       | Na                                     | ame:KEVIN HAGGERTY                                    |  |
| From                                    | To I  | Descripti            | on Fed?     |           |               |            |                                       |                                        | any:KEVIN HAGGERTY DRILLING INC                       |  |
|                                         |       | BENTON               |             |           |               |            |                                       |                                        | • <b>No</b> :MWC-94                                   |  |
|                                         |       | 10-20 SA             | -           |           |               |            |                                       |                                        |                                                       |  |
|                                         |       |                      |             |           |               |            | C                                     | omple                                  | Date<br>12/11/2007<br>eted:                           |  |
|                                         |       |                      |             |           |               |            |                                       | JP.10                                  |                                                       |  |
|                                         |       |                      |             |           |               |            |                                       |                                        |                                                       |  |
|                                         |       |                      |             |           |               |            |                                       |                                        |                                                       |  |

### MW-4

### **MONTANA WELL LOG REPORT**

Site Name: UTILITY SOLUTIONS LLC.

**GWIC Id: 240503** 

Section 1: Well Owner(s)

1) UTILITY SOLUTIONS, LLC. (MAIL)

P.O. BOX 10098

BOZEMAN MT 59719 [12/18/2007]

### Air Test \*

Total Depth: 63 Static Water Level: 27.3

Water Temperature:

Section 9: Well Log

Description

63 SAND & GRAVEL

16 CLAY

**Geologic Source** 

Unassigned From To

0

16

Section 7: Well Test Data

**Section 2: Location** 

Section **Quarter Sections** Township Range NE1/4 NW1/4 NW1/4 04F 028 25 County Geocode **GALLATIN** 

Longitude Geomethod Latitude 45.640079 -111.183252 TRS-TWN

Addition **Block ELK GROVE** 

**Section 3: Proposed Use of Water** 

MONITORING (1)

Section 4: Type of Work Drilling Method: ROTARY Status: NEW WELL

**Section 5: Well Completion Date** 

Date well completed: Tuesday, December 18, 2007

**Section 6: Well Construction Details** 

**Borehole dimensions** From To Diameter

0 63 Casing

|      | 2401119 |          |           |          |       |                 |  |  |
|------|---------|----------|-----------|----------|-------|-----------------|--|--|
|      |         |          | Wall      | Pressure |       |                 |  |  |
| From | То      | Diameter | Thickness | Rating   | Joint | Туре            |  |  |
| 0    | 1.5     | 8        |           |          |       | STEEL           |  |  |
| 0    | 21      | 2        |           |          | -     | PVC-SCHED<br>40 |  |  |
|      |         |          |           |          |       |                 |  |  |

Completion (Perf/Screen)

|      |    |          | # ОТ     | Size of  |                       |
|------|----|----------|----------|----------|-----------------------|
| From | То | Diameter | Openings | Openings | Description           |
| 21   | 41 | 2        |          | 1020     | SCREEN-CONTINUOUS-PVC |

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is

true to the best of my knowledge.

Name: KEVIN HAGGERTY Company: KEVIN HAGGERTY DRILLING INC License No:MWC-94

Date 12/18/2007 Completed:

Annular Space (Seal/Grout/Packer)

|      |    |             | Cont. |
|------|----|-------------|-------|
| From | То | Description | Fed?  |
| 0.5  | 1  | CEMENT      |       |
| 1    | 18 | BENTONITE   |       |
| 18   | 42 | 10-20 SAND  |       |
| 42   | 45 | BENTONITE   |       |
| 45   | 63 | 10-20 SAND  |       |

80 gpm with drill stem set at 58 feet for 1 hours. Time of recovery 1 hours. Recovery water level 27.3 feet. Pumping water level feet. **Datum** NAD27 \* During the well test the discharge rate shall be as uniform as Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing. **Section 8: Remarks** 

ELK GROVE MW-4. FLUSH MOUNT COMPLETION. MW-4 IS

NESTED IN SAME BOREHOLE AS MW-4A OR GWIC 240505.

FACT SHEET: MGWPCS Permit

### MW-4A

### MONTANA WELL LOG REPORT

Site Name: UTILITY SOLUTIONS LLC.

**GWIC Id: 240505** 

Section 1: Well Owner(s)

1) UTILITY SOLUTIONS, LLC. (MAIL) P.O. BOX 10098

BOZEMAN MT 59719 [12/18/2007]

**Section 2: Location** 

**Township Quarter Sections** Range Section 02S 04E NE1/4 NW1/4 NW1/4 County Geocode

**GALLATIN** 

Latitude Longitude 45.640079 -111.183252 Geomethod TRS-TWN

Datum NAD27

Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of

Addition **Block** Lot

**ELK GROVE** 

Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work Drilling Method: ROTARY

Status: NEW WELL

**Section 5: Well Completion Date** 

Date well completed: Tuesday, December 18, 2007

**Section 6: Well Construction Details** 

**Borehole dimensions** From To Diameter

0 63

|      |     |          | Wall      | Pressure |                 |                 |
|------|-----|----------|-----------|----------|-----------------|-----------------|
| From | То  | Diameter | Thickness | Rating   | Joint           | Туре            |
| 0    | 1.5 | 8        |           |          |                 | STEEL           |
| 0    | 47  | 2        |           |          | FLUSH<br>THREAD | PVC-SCHED<br>40 |

Completion (Perf/Screen)

# of Size of From To Diameter Openings Openings Description SCREEN-CONTINUOUS-62 2 PVC

Annular Space (Seal/Grout/Packer)

| 1 | Annular Space (Seal/Grout |    |             |       |  |  |  |  |
|---|---------------------------|----|-------------|-------|--|--|--|--|
|   |                           |    |             | Cont. |  |  |  |  |
|   | From                      | То | Description | Fed?  |  |  |  |  |
|   | 0.5                       | 1  | CEMENT      |       |  |  |  |  |
|   | 1                         | 18 | BENTONITE   |       |  |  |  |  |
|   | 18                        | 42 | 10-20 SAND  |       |  |  |  |  |
|   | 42                        | 45 | BENTONITE   |       |  |  |  |  |
|   | 45                        | 63 | 10-20 SAND  |       |  |  |  |  |

Section 7: Well Test Data

Total Depth: 63 Static Water Level: 27.3 Water Temperature:

Air Test \*

80 gpm with drill stem set at 58 feet for 1 hours.

Time of recovery 1 hours. Recovery water level 27.3 feet. Pumping water level feet.

\* During the well test the discharge rate shall be as uniform as

FACT SHEET: MGWPCS Permit

the well. Sustainable yield does not include the reservoir of the

well casing.

Section 8: Remarks

ELK GROVE MW-4A. FLUSH MOUNT COMPLETION. MW-4A IS NESTED IN SAME BOREHOLE AS MW-4 OR GWIC 240503.

Section 9: Well Log **Geologic Source** 

16 CLAY

Description

Unassigned From To

0

|   | •                                                            |        | JOE ( )                                              |  |  |  |  |  |
|---|--------------------------------------------------------------|--------|------------------------------------------------------|--|--|--|--|--|
|   | 16                                                           | 63     | SAND & GRAVEL                                        |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
| _ |                                                              |        |                                                      |  |  |  |  |  |
| 5 |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   |                                                              |        |                                                      |  |  |  |  |  |
|   | Driller                                                      | Certif | fication                                             |  |  |  |  |  |
|   | All wor                                                      | k perf | ormed and reported in this well log is in compliance |  |  |  |  |  |
|   | with the Montana well construction standards. This report is |        |                                                      |  |  |  |  |  |

true to the best of my knowledge.

Name: KEVIN HAGGERTY Company: KEVIN HAGGERTY DRILLING INC License No:MWC-94 Date 12/18/2007

Completed:

### MW-4B

#### **MONTANA WELL LOG REPORT** Site Name: UTILITY SOLUTIONS LLC. Section 7: Well Test Data **GWIC Id: 240502** Total Depth: 46 Static Water Level: 23.8 Section 1: Well Owner(s) Water Temperature: 1) UTILITY SOLUTIONS, LLC. (MAIL) P.O. BOX 10098 Air Test \* BOZEMAN MT 59719 [12/14/2007] 15 gpm with drill stem set at 41 feet for 1 hours. **Section 2: Location** Time of recovery 1 hours. Range **Quarter Sections** Township Section Recovery water level 23.8 feet. 02S SW1/4 NW1/4 NW1/4 04E 25 Pumping water level feet. Geocode County GALLATIN Geomethod Latitude Longitude **Datum** -111.185891 TRS-TWN NAD27 \* During the well test the discharge rate shall be as uniform as 45.638197 Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the Addition **Block** Lot well casing. **ELK GROVE** Section 8: Remarks Section 3: Proposed Use of Water **ELK GROVE MW-4B** MONITORING (1) Section 9: Well Log Section 4: Type of Work **Geologic Source Drilling Method: ROTARY** Unassigned Status: NEW WELL From To Description 16 CLAY WITH SOME SAND **Section 5: Well Completion Date** 0 Date well completed: Friday, December 14, 2007 46 SAND & GRAVEL 16 **Section 6: Well Construction Details Borehole dimensions** From To Diameter 0 46 Casing Wall Pressure Diameter Thickness Rating From To Joint Type 0.25 WELDED A53B STEEL -2 6 6 FLUSH PVC-SCHED -2 17.82 THREAD Completion (Perf/Screen) # of Size of **Driller Certification** From To Diameter Openings Openings Description SCREEN-CONTINUOUS-All work performed and reported in this well log is in compliance 020 17.8 37.82 PVC with the Montana well construction standards. This report is true to the best of my knowledge. Annular Space (Seal/Grout/Packer) Name: KEVIN HAGGERTY From To Description Fed? Company: KEVIN HAGGERTY DRILLING INC 14 BENTONITE License No: MWC-94 Date 12/14/2007 46 10-20 SAND Completed:

### MW-4C

#### **MONTANA WELL LOG REPORT** Site Name: UTILITY SOLUTIONS LLC. Section 7: Well Test Data GWIC Id: 240501 Total Depth: 40 Static Water Level: 14.25 Section 1: Well Owner(s) Water Temperature: 1) UTILITY SOLUTIONS, LLC. (MAIL) P.O. BOX 10098 Air Test \* BOZEMAN MT 59719 [12/13/2007] 15 gpm with drill stem set at 35 feet for 1 hours. **Section 2: Location** Time of recovery 1 hours. Range **Quarter Sections** Township Section Recovery water level 14.25 feet. 02S SW1/4 NE1/4 NW1/4 04E 25 Pumping water level feet. Geocode County GALLATIN Geomethod Latitude Longitude **Datum** -111.180613 TRS-TWN NAD27 \* During the well test the discharge rate shall be as uniform as 45.638197 Ground Surface Altitude Ground Surface Method Datum Date possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the Addition **Block** Lot well casing. **ELK GROVE** Section 8: Remarks Section 3: Proposed Use of Water **ELK GROVE MW4-C** MONITORING (1) Section 9: Well Log Section 4: Type of Work **Geologic Source Drilling Method: ROTARY** Unassigned Status: NEW WELL From To Description 12 TOPSOIL & CLAY **Section 5: Well Completion Date** 0 Date well completed: Thursday, December 13, 2007 40 SAND & GRAVEL 12 **Section 6: Well Construction Details Borehole dimensions** From To Diameter 0 40 Casing Wall Pressure From To Diameter Thickness Rating Joint Type -2.5 3 6 WELDED A53B STEEL 0.25 PVC-SCHED FLUSH -2 6 2 THREAD Completion (Perf/Screen) # of Size of **Driller Certification** From To Diameter Openings Openings Description SCREEN-CONTINUOUS-All work performed and reported in this well log is in compliance 26 2 020 PVC with the Montana well construction standards. This report is true to the best of my knowledge. Annular Space (Seal/Grout/Packer) Name: KEVIN HAGGERTY From To Description Fed? Company: KEVIN HAGGERTY DRILLING INC 4 BENTONITE License No: MWC-94 Date 12/13/2007 40 10-20 SAND Completed:

Page **41** of **47** FACT SHEET: MGWPCS Permit

No. MTX000110 – Four Corners Water & Sewer District

# **APPENDIX B – NONSIGNIFICANCE PROJECTIONS**

## MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY (DEQ)

# Montana Ground Water Pollution Control System

### Ground Water Dilution Projection (GWDP) - Nondegradation Significance Analysis

These projections estimate the parameter concentrations in the aquifer downgradient of the subsurface discharge. After dilution with ground water, the projected concentration is compared to the respective significance criteria in determining nonsignificant changes in water quality (ARM 17.30.715).

Site Name: Four Corners Water and Sewer District

<u>Location:</u> Bozeman - Four Corners <u>Permit #:</u> MTX000110, Outfall 001

Notes: Design Capacity = 100,000 gpd; 13,368 ft³/d

These calculations are for the following parameter of interest: Nitrate

These calculations use the most restrictive ground water standard.

These calculations do not credit potential losses due to chemical transformation.

These calculations do not credit potential losses due to attenuation.

### **Projected Concentration Calculation**

Cr = (Qd)(Cd) + (Qs)(Cs)

Qd + Qs

The Activity is Not Significant if Cr < Significance Criteria

## GWDP(a) - Ground Water Nitrate Projection at the End of the Mixing Zone.

| Qd =             | 13368                                            | ft³/d | Design capacity - effluent flow rate                        |  |  |  |  |
|------------------|--------------------------------------------------|-------|-------------------------------------------------------------|--|--|--|--|
| Cd =             | 10.0                                             | mg/L  | Concentration - effluent (treated wastewater)               |  |  |  |  |
|                  | 405                                              | ft    | Length of ground water dilution zone                        |  |  |  |  |
|                  | 15                                               | ft    | Thickness of dilution zone                                  |  |  |  |  |
|                  | 800                                              | ft    | Outfall width, perpendicular to ground water flow direction |  |  |  |  |
|                  | ft Projected width of downgradient dilution zone |       |                                                             |  |  |  |  |
|                  | 13063                                            | ft²   | Cross sectional area of dilution zone (A)                   |  |  |  |  |
|                  | 877                                              | ft/d  | Hydraulic conductivity (K)                                  |  |  |  |  |
|                  | 0.0066                                           | ft/ft | Hydraulic gradient (I)                                      |  |  |  |  |
| Qs(Qgw) =        | 75612                                            | ft³/d | Ground water volume (Qgw)                                   |  |  |  |  |
| Cs =             | 1.43                                             | mg/L  | Ambient nitrate concentration in ground water               |  |  |  |  |
| Cr =             | 2.72                                             | mg/L  | Projected concentration - end of the mixing zone            |  |  |  |  |
| Sign. Criteria = | 7.5                                              | mg/L  | Nonsignificance Criteria, ARM 17.30.715                     |  |  |  |  |
| Sign. Activity?  | < 7.5                                            | mg/L  | The activity is not significant                             |  |  |  |  |

### GWDP(b) - Ground Water Nitrate Projection just prior to the Downgradient Surface Water.

| Qd =                                                            | Qd = 13368 ft <sup>s</sup> /d Design capacity - effluent flow rate |       |                                                             |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------|-------|-------------------------------------------------------------|--|--|
| Cd =                                                            | 10.0                                                               | mg/L  | Concentration - effluent (treated wastewater)               |  |  |
|                                                                 | 405                                                                | ft    | Length of ground water dilution zone                        |  |  |
|                                                                 | 15                                                                 | ft    | Thickness of dilution zone                                  |  |  |
|                                                                 | 800                                                                | ft    | Outfall width, perpendicular to ground water flow direction |  |  |
|                                                                 | 871                                                                | ft    | Projected width of downgradient dilution zone               |  |  |
| 13063 ft <sup>2</sup> Cross sectional area of dilution zone (A) |                                                                    |       |                                                             |  |  |
|                                                                 | 877                                                                | ft/d  | Hydraulic conductivity (K)                                  |  |  |
|                                                                 | 0.0066                                                             | ft/ft | Hydraulic gradient (I)                                      |  |  |
| Qs(Qgw) =                                                       | 75612                                                              | ft³/d | Ground water volume (Qgw)                                   |  |  |
| Cs =                                                            | 1.43                                                               | mg/L  | Ambient nitrate concentration in ground water               |  |  |
| Cr =                                                            | 2.72                                                               | mg/L  | Projected concentration - just prior to surface water       |  |  |
| Sign. Criteria =                                                | 7.5                                                                | mg/L  | Nonsignificance Criteria, ARM 17.30.715                     |  |  |
| Sign. Activity?                                                 | < 7.5                                                              | mg/L  | The activity is not significant                             |  |  |

### GWDP(c) - Distance in Ground Water from the discharge source where the Significance Criteria for Nitrate is met.

| Qd =             | 13368  | ft³/d | Design capacity - effluent flow rate                        |
|------------------|--------|-------|-------------------------------------------------------------|
| Cd =             | 10.0   | mg/L  | Concentration - effluent (treated wastewater)               |
|                  | 405    | ft    | Length of ground water dilution zone                        |
|                  | 15     | ft    | Thickness of dilution zone                                  |
|                  | 800    | ft    | Outfall width, perpendicular to ground water flow direction |
|                  | 871    | ft    | Projected width of downgradient dilution zone               |
|                  | 13063  | ft²   | Cross sectional area of dilution zone (A)                   |
|                  | 877    | ft/d  | Hydraulic conductivity (K)                                  |
|                  | 0.0066 | ft/ft | Hydraulic gradient (I)                                      |
| Qs(Qgw) =        | 75612  | ft³/d | Ground water volume (Qgw)                                   |
| Cs =             | 1.430  | mg/L  | Ambient nitrate concentration in ground water               |
| Cr =             | 2.718  | mg/L  | Projected concentration                                     |
| Sign. Criteria = | 7.5    | mg/L  | Nonsignificance Criteria, ARM 17.30.715                     |
| Distance =       | 0      | ft    | Distance needed to meet the significance criteria           |
|                  |        | •     |                                                             |

Projections performed by Darryl Barton on November 5, 2020.

## MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY (DEQ)

### **Montana Ground Water Pollution Control System**

### Ground Water Dilution Projection (GWDP) - Nondegradation Significance Analysis

These projections estimate the parameter concentrations in the aquifer downgradient of the subsurface discharge. After dilution with ground water, the projected concentration is compared to the respective significance criteria in determining nonsignificant changes in water quality (ARM 17.30.715).

Site Name: Four Corners Water and Sewer District

Location: Bozeman - Four Corners

Permit #: MTX000110, Outfall 003

Notes: Design Capacity = 1,400,000 gpd; 187,153 ft<sup>3</sup>/d

These calculations are for the following parameter of interest: Nitrate

These calculations use the most restrictive ground water standard.

These calculations do not credit potential losses due to chemical transformation.

These calculations do not credit potential losses due to attenuation.

### **Projected Concentration Calculation**

Cr = (Qd)(Cd) + (Qs)(Cs)

Qd + Qs

The Activity is Not Significant if Cr < Significance Criteria

### GWDP(a) - Ground Water Nitrate Projection at the End of the Mixing Zone.

| Qd =             | 187153 | ft³/d | Design capacity - effluent flow rate                        |  |
|------------------|--------|-------|-------------------------------------------------------------|--|
| Cd =             | 9.0    | mg/L  | Concentration - effluent (treated wastewater)               |  |
|                  | 500    | ft    | Length of ground water dilution zone                        |  |
|                  | 15     | ft    | Thickness of dilution zone                                  |  |
|                  | 1121   | ft    | Outfall width, perpendicular to ground water flow direction |  |
|                  | 1209   | ft    | Projected width of downgradient dilution zone               |  |
|                  | 18128  | ft²   | Cross sectional area of dilution zone (A)                   |  |
|                  | 567    | ft/d  | Hydraulic conductivity (K)                                  |  |
|                  | 0.0068 | ft/ft | Hydraulic gradient (I)                                      |  |
| Qs(Qgw) =        | 69892  | ft³/d | Ground water volume (Qgw)                                   |  |
| Cs =             | 1.43   | mg/L  | Ambient nitrate concentration in ground water               |  |
| Cr =             | 6.94   | mg/L  | Projected concentration - end of the mixing zone            |  |
| Sign. Criteria = | 7.5    | mg/L  | Nonsignificance Criteria, ARM 17.30.715                     |  |
| Sign. Activity?  | < 7.5  | mg/L  | The activity is not significant                             |  |

### GWDP(b) - Ground Water Nitrate Projection just prior to the Downgradient Surface Water.

| Qd =             | <b>187153</b> ft³/d                                             | Design capacity - effluent flow rate                        |  |  |  |
|------------------|-----------------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Cd =             | 9.0 mg/L                                                        | Concentration - effluent (treated wastewater)               |  |  |  |
|                  | <b>500</b> ft                                                   | Length of ground water dilution zone                        |  |  |  |
|                  | <b>15</b> ft                                                    | Thickness of dilution zone                                  |  |  |  |
|                  | <b>1121</b> ft                                                  | Outfall width, perpendicular to ground water flow direction |  |  |  |
|                  | <b>1209</b> ft                                                  | Projected width of downgradient dilution zone               |  |  |  |
|                  | 18128 ft <sup>2</sup> Cross sectional area of dilution zone (A) |                                                             |  |  |  |
|                  | <b>567</b> ft/d                                                 | Hydraulic conductivity (K)                                  |  |  |  |
|                  | <b>0.0068</b> ft/ft                                             | Hydraulic gradient (I)                                      |  |  |  |
| Qs(Qgw) =        | <b>69892</b> ft <sup>3</sup> /d                                 | Ground water volume (Qgw)                                   |  |  |  |
| Cs =             | <b>1.43</b> mg/L                                                | Ambient nitrate concentration in ground water               |  |  |  |
| Cr =             | <b>6.94</b> mg/L                                                | Projected concentration - just prior to surface water       |  |  |  |
| Sign. Criteria = | <b>7.5</b> mg/L                                                 | Nonsignificance Criteria, ARM 17.30.715                     |  |  |  |
| Sign. Activity?  | < 7.5 mg/L                                                      | The activity is not significant                             |  |  |  |
|                  |                                                                 |                                                             |  |  |  |

### GWDP(c) - Distance in Ground Water from the discharge source where the Significance Criteria for Nitrate is met.

| Qd =             | 187153 | ft³/d | Design capacity - effluent flow rate                        |
|------------------|--------|-------|-------------------------------------------------------------|
| Cd =             | 9.0    | mg/L  | Concentration - effluent (treated wastewater)               |
|                  | 500    | ft    | Length of ground water dilution zone                        |
|                  | 15     | ft    | Thickness of dilution zone                                  |
|                  | 1121   | ft    | Outfall width, perpendicular to ground water flow direction |
|                  | 1209   | ft    | Projected width of downgradient dilution zone               |
|                  | 18128  | ft²   | Cross sectional area of dilution zone (A)                   |
|                  | 567    | ft/d  | Hydraulic conductivity (K)                                  |
|                  | 0.0068 | ft/ft | Hydraulic gradient (I)                                      |
| Qs(Qgw) =        | 69892  | ft³/d | Ground water volume (Qgw)                                   |
| Cs =             | 1.430  | mg/L  | Ambient nitrate concentration in ground water               |
| Cr =             | 6.94   | mg/L  | Projected concentration                                     |
| Sign. Criteria = | 7.5    | mg/L  | Nonsignificance Criteria, ARM 17.30.715                     |
| Distance =       | 0      | ft    | Distance needed to meet the significance criteria           |
| D                |        |       | Assaultan Navigrahan 0, 2000                                |

Projections performed by Darryl Barton on November 9, 2020.

# MONTANA DEPARTMENT OF ENVIRONMENTAL **QUALITY (DEQ)**

# PHOSPHOROUS BREAKTHROUGH ANALYSIS

| SITE NAME: | Four Corners Water and Sewer District                       |
|------------|-------------------------------------------------------------|
| COUNTY:    | Gallatin                                                    |
| Permit #:  | MTX000110, Outfall 001                                      |
| NOTES:     | Variables used are based on conservative measurements       |
| _          | Design Capacity = 100,000 gpd = 13,368 ft <sup>3</sup> /day |
|            |                                                             |

Phosphorus load from DMR = 0.62 lb/day = 226 lb/year

| VARIABLES | DESCRIPTION                                                                 | <u>VALUE</u> | UNITS  |
|-----------|-----------------------------------------------------------------------------|--------------|--------|
| Lg        | Length of Primary Drainfield as Measured Perpendicular to Ground Water Flow | 800          | ft     |
| L         | Length of Primary Drainfield's Long Axis                                    | 1212         | ft     |
| W         | Width of Primary Drainfield's Short Axis                                    | 31           | ft     |
| В         | Depth to Limiting Layer from Bottom of Drainfield Laterals*                 | 17           | ft     |
| D         | Distance from Drainfield to Surface Water                                   | 700          | ft     |
| Т         | Phosphorous Mixing Depth in Ground Water (0.5 ft for coarse soils,          | 1.0          | ft     |
| Ne        | 1.0 ft for fine soils)**                                                    |              |        |
| Sw        | Soil Weight (usually constant)                                              | 100          | lb/ft3 |
| Pa        | Phosphorous Adsorption Capacity of Soil (usually constant)                  | 200          | ppm    |
| #I        | Number of proposed wastewater treatment systems                             | 1            |        |
| CONSTANTS |                                                                             |              |        |
| PI        | Phosphorous Load per proposed wastewater treatment system                   | 226          | lbs/yr |
| X         | Conversion Factor for ppm to percentage (constant)                          | 1.0E+06      |        |
| EQUATIONS |                                                                             |              |        |
| Pt        | Total Phosphorous Load = (PI)(#I)                                           | 226          | lbs/yr |
| W1        | Soil Weight under Drainfield = (L)(W)(B)(Sw)                                | 63872400     | lbs    |
| W2        | Soil Weight from Drainfield to Surface Water                                | 60287500     | lbs    |
|           | = [(Lg)(D) + (0.0875)(D)(D)] (T)(Sw)                                        |              |        |
| 1         | ·                                                                           |              |        |

| BY:   | Darryl Barton    |
|-------|------------------|
| DATE: | November 5, 2020 |

Р1

**SOLUTION** 

**NOTES:** \* Depth to limiting layer is typically based on depth to water in a test pit or bottom of

Total Phosphorous Adsorption by Soils = (W1 + W2)[(Pa)/(X)]

**Breakthrough Time to Surface Water = P / Pt** 

a dry test pit minus two feet to account for burial depth of standard drainfield laterals.

24832 lbs

110 years

Page **45** of **47 FACT SHEET: MGWPCS Permit** 

No. MTX000110 – Four Corners Water & Sewer District

# MONTANA DEPARTMENT OF ENVIRONMENTAL **QUALITY (DEQ)**

# **PHOSPHOROUS BREAKTHROUGH ANALYSIS**

| SITE NAME: | Four Corners Water and Sewer District                 |
|------------|-------------------------------------------------------|
| COUNTY:    | Gallatin                                              |
| Permit #:  | MTX000110, Outfall 003                                |
| NOTES:     | Variables used are based on conservative measurements |
| _          | Design Capacity = 100,000 gpd = 13,368 ft³/day        |
|            |                                                       |
|            | Phosphorus load from DMR = 8.68 lb/day = 3168 lb/year |

| VARIABLES | DESCRIPTION |  | VALUE |
|-----------|-------------|--|-------|

| Lg | Length of Primary Drainfield as Measured Perpendicular to Ground   | 1121  | ft     |
|----|--------------------------------------------------------------------|-------|--------|
|    | Water Flow                                                         |       |        |
| L  | Length of Primary Drainfield's Long Axis                           | 1121  | ft     |
| W  | Width of Primary Drainfield's Short Axis                           | 192.5 | ft     |
| В  | Depth to Limiting Layer from Bottom of Drainfield Laterals*        | 4     | ft     |
| D  | Distance from Drainfield to Surface Water                          | 781   | ft     |
| Т  | Phosphorous Mixing Depth in Ground Water (0.5 ft for coarse soils, | 1.0   | ft     |
| Ne | 1.0 ft for fine soils)**                                           |       |        |
| Sw | Soil Weight (usually constant)                                     | 100   | lb/ft3 |
| Pa | Phosphorous Adsorption Capacity of Soil (usually constant)         | 200   | ppm    |
| #I | Number of proposed wastewater treatment systems                    | 1     |        |
|    |                                                                    |       |        |

UNITS

| CO | NICT | $\Gamma \wedge h$ | ITC   |
|----|------|-------------------|-------|
| CO | IV O | H                 | 4 I O |

| PI | Phosphorous Load per proposed wastewater treatment system | 3168    | lbs/yr |
|----|-----------------------------------------------------------|---------|--------|
| Χ  | Conversion Factor for ppm to percentage (constant)        | 1.0E+06 |        |

## **EQUATIONS**

| Pt | Total Phosphorous Load = (PI)(#I)                           | 226      | lbs/yr |
|----|-------------------------------------------------------------|----------|--------|
| W1 | Soil Weight under Drainfield = (L)(W)(B)(Sw)                | 86317000 | lbs    |
| W2 | Soil Weight from Drainfield to Surface Water                | 92887259 | lbs    |
|    | = [(Lg)(D) + (0.0875)(D)(D)] (T)(Sw)                        |          |        |
| P1 | Total Phosphorous Adsorption by Soils = (W1 + W2)[(Pa)/(X)] | 35841    | lbs    |

| /= |
|----|
|    |
|    |

| SOLUTION |                                             |     |       |
|----------|---------------------------------------------|-----|-------|
| ВТ       | Breakthrough Time to Surface Water = P / Pt | 159 | years |
|          |                                             |     |       |

BY: Darryl Barton DATE: November 9, 2020

\* Depth to limiting layer is typically based on depth to water in a test pit or bottom of **NOTES:** 

a dry test pit minus two feet to account for burial depth of standard drainfield laterals.

# APPENDIX C - REFERENCES

40 CFR § 136 – Guidelines Establishing Test Procedures for the Analysis of Pollutants. 2017.

Administrative Rules of Montana, Title 17, Chapter 30, Water Quality:

- Subchapter 2 Water Quality Permit Fees.
- Subchapter 5 Mixing Zones in Surface and Ground Water.
- Subchapter 6 Surface Water Quality Standards and Procedures.
- Subchapter 7 Nondegradation of Water Quality.
- Subchapter 10 Montana Ground Water Pollution Control System.
- Subchapter 13 Montana Pollutant Discharge Elimination System.

Brady, N.C. and Weil, R. R. 2004. Elements of the Nature and Properties of Soils 2nd Edition. Prentice Hall. Upper Saddle River, NJ.

Cherry, J.A. and Freeze, R. A. 1979. Groundwater, Prentice-Hall Inc., Englewood Cliffs, J.J.

Department of Environmental Quality. 2015. Administrative Record of Montana Ground Water Pollution Control System (MGWPCS) permit application and supplemental materials, Four Corners Water and Sewer District MTX000110.

Department of Environmental Quality. 2018. Administrative Record of Montana Ground Water Pollution Control System (MGWPCS) permit application and supplemental materials, Four Corners Water and Sewer District MTX000110.

Department of Environmental Quality. 2020. Administrative Record of Montana Ground Water Pollution Control System (MGWPCS) permit application and supplemental materials, Four Corners Water and Sewer District MTX000110.

Department of Environmental Quality, Water Quality Circulars:

- Circular DEQ-2 Design Standards for Wastewater Facilities.
- Circular DEQ-4 Montana Standards for On-Site Subsurface Sewage Treatment Systems.
- Circular DEQ-7 Montana Numeric Water Quality Standards, Required Reporting Values, and Trigger Values.

Driscoll, F.G. 1986. Groundwater and Wells 2nd Edition. Johnson Division. St. Paul, Minnesota.

Fetter, C.W. 2001. Applied Hydrogeology 4th Edition. Prentice Hall. Upper Saddle River, NJ.

Ground-Water Information Center (GWIC), Montana Bureau of Mines and Geology. Retrieved 2020 from GWIC database, <a href="http://mbmggwic.mtech.edu">http://mbmggwic.mtech.edu</a>.

Montana Code Annotated (MCA), Title 75, Chapter 5, Montana Water Quality Act. 2017.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2020. National Cooperative Soil Survey. Retrieved from http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.

Page 47 of 47 FACT SHEET: MGWPCS Permit

No. MTX000110 – Four Corners Water & Sewer District

U.S. Environmental Protection Agency, Effluent Limitation Guidelines, <a href="http://water.epa.gov/scitech/wastetech/guide/">http://water.epa.gov/scitech/wastetech/guide/</a>, 2019.

U.S. Environmental Protection Agency. 2002. Office of Water and Office of Research and Development. Onsite Wastewater Treatment Systems Manual. 625-R-00-008.

U.S. Environmental Protection Agency. 2010. Office of Wastewater Management. NPDES Permit Writers Manual. 833-K-10-001.

USGS website – Geologic units in Gallatin county, Montana. 2020. https://mrdata.usgs.gov/geology/state/fips-unit.php?code=f30063

U.S. Geological Survey, Basic Ground Water Hydrology, <a href="http://pubs.usgs.gov/wsp/2220/report.pdf">http://pubs.usgs.gov/wsp/2220/report.pdf</a>, 2010.

U.S. Geological Survey, Groundwater Resources, http://water.usgs.gov/ogw/basics.html, 2020.

Weight, W. D., and J. L. Sonderegger. 2001. Manual of Applied Field Hydrogeology. McGraw-Hill. New York.